Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

2.
Cell Death Dis ; 15(1): 75, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242872

ABSTRACT

The anti-foreign tissue (transplant rejection) response, mediated by the immune system, has been the biggest obstacle to successful organ transplantation. There are still many enigmas regarding this process and some aspects of the underlying mechanisms driving the immune response against foreign tissues remain poorly understood. Here, we found that a large number of neutrophils and macrophages were attached to the graft during skin transplantation. Furthermore, both types of cells could autonomously adhere to and damage neonatal rat cardiomyocyte mass (NRCM) in vitro. We have demonstrated that Complement C3 and the receptor CR3 participated in neutrophils/macrophages-mediated adhesion and damage this foreign tissue (NRCM or skin grafts). We have provided direct evidence that the damage to these tissues occurs by a process referred to as trogocytosis, a damage mode that has never previously been reported to directly destroy grafts. We further demonstrated that this process can be regulated by NFAT, in particular, NFATc3. This study not only enriches an understanding of host-donor interaction in transplant rejection, but also provides new avenues for exploring the development of novel immunosuppressive drugs which prevent rejection during transplant therapy.


Subject(s)
Graft Rejection , NFATC Transcription Factors , Neutrophils , Rats , Animals , Trogocytosis , Macrophages
3.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Article in English | MEDLINE | ID: mdl-37702564

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Subject(s)
Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Calcineurin/metabolism , CD36 Antigens/metabolism , Cyclosporine/adverse effects , Cyclosporine/metabolism , Lipids , Macrophages , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Plaque, Atherosclerotic/chemically induced , Plaque, Atherosclerotic/metabolism
4.
J Mol Cell Cardiol ; 186: 57-70, 2024 01.
Article in English | MEDLINE | ID: mdl-37984156

ABSTRACT

BACKGROUND: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS: We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS: We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION: Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , Foam Cells , Humans , Mice , Animals , Foam Cells/metabolism , Proprotein Convertase 9/metabolism , Macrophages/metabolism , Atherosclerosis/pathology , Lipoproteins, LDL/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
6.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34570211

ABSTRACT

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Atherosclerosis/genetics , Foam Cells , Humans , Leukocytes, Mononuclear , Mice , MicroRNAs/genetics , NFATC Transcription Factors/genetics , Proprotein Convertase 9
7.
Acta Pharmacol Sin ; 42(4): 550-559, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32694755

ABSTRACT

The excessive proliferation and migration of smooth muscle cells (SMCs) play an important role in restenosis following percutaneous coronary interventions. MicroRNAs are able to target various genes and involved in the regulation of diverse cellular processes including cell growth and proliferation. In this study we investigated whether and how MicroRNAs regulated vascular SMC proliferation and vascular remodeling following carotid artery injury in mice. We showed that carotid artery injury-induced neointimal formation was remarkably ameliorated in microRNA (miR)-302 heterozygous mice and SMC-specific miR-302 knockout mice. In contrast, delivery of miR-302a adenovirus to the injured carotid artery enhanced neointimal formation. Upregulation of miR-302a enhanced the proliferation and migration of mouse aorta SMC (MASMC) in vitro by promoting cell cycle transition, whereas miR-302a inhibition caused the opposite results. Moreover, miR-302a promoted Akt activation by corporately decreasing Akt expression and increasing Akt phosphorylation in MASMCs. Application of the Akt inhibitor GSK690693 (5 µmol/L) counteracted the functions of miR-302a in promoting MASMC proliferation and migration. We further revealed that miR-302a directly targeted at the 3' untranslated region of PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and negatively regulated PHLPP2 expression. Restoration of PHLPP2 abrogated the effects of miR-302a on Akt activation and MASMC motility. Furthermore, knockdown of PHLPP2 largely abolished the inhibition of neointimal formation that was observed in miR-302 heterozygous mice. Our data demonstrate that miR-302a exacerbates SMC proliferation and restenosis through increasing Akt signaling by targeting PHLPP2.


Subject(s)
MicroRNAs/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/etiology , Phosphoprotein Phosphatases/metabolism , Signal Transduction/physiology , Vascular Remodeling/physiology , Animals , Carotid Artery Injuries/complications , Carotid Artery Injuries/metabolism , Cell Movement/drug effects , Cell Proliferation/physiology , Female , Gene Knockout Techniques , Male , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/metabolism
8.
Acta Pharmacol Sin ; 42(4): 560-572, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32694758

ABSTRACT

Chloride (Cl-) homeostasis is of great significance in cardiovascular system. Serum Cl- level is inversely associated with the mortality of patients with heart failure. Considering the importance of angiogenesis in the progress of heart failure, this study aims to investigate whether and how reduced intracellular Cl- concentration ([Cl-]i) affects angiogenesis. Human umbilical endothelial cells (HUVECs) were treated with normal Cl- medium or low Cl- medium. We showed that reduction of [Cl-]i (from 33.2 to 16.18 mM) inhibited HUVEC proliferation, migration, cytoskeleton reorganization, tube formation, and subsequently suppressed angiogenesis under basal condition, and VEGF stimulation or hypoxia treatment. Moreover, VEGF-induced NADPH-mediated reactive oxygen species (ROS) generation and VEGFR2 axis activation were markedly attenuated in low Cl- medium. We revealed that lowering [Cl-]i inhibited the expression of the membrane-bound catalytic subunits of NADPH, i.e., p22phox and Nox2, and blunted the translocation of cytosolic regulatory subunits p47phox and p67phox, thereby restricting NADPH oxidase complex formation and activation. Furthermore, reduced [Cl-]i enhanced ROS-associated protein tyrosine phosphatase 1B (PTP1B) activity and increased the interaction of VEGFR2 and PTP1B. Pharmacological inhibition of PTP1B reversed the effect of lowering [Cl-]i on VEGFR2 phosphorylation and angiogenesis. In mouse hind limb ischemia model, blockade of Cl- efflux using Cl- channel inhibitors DIDS or DCPIB (10 mg/kg, i.m., every other day for 2 weeks) significantly enhanced blood flow recovery and new capillaries formation. In conclusion, decrease of [Cl-]i suppresses angiogenesis via inhibiting oxidase stress-mediated VEGFR2 signaling activation by preventing NADPH oxidase complex formation and promoting VEGFR2/PTP1B association, suggesting that modulation of [Cl-]i may be a novel therapeutic avenue for the treatment of angiogenic dysfunction-associated diseases.


Subject(s)
Chlorides/metabolism , Neovascularization, Physiologic/physiology , Oxidative Stress/physiology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Actin Cytoskeleton/physiology , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells , Humans , Ischemia/metabolism , Mice, Inbred C57BL , NADPH Oxidase 2/metabolism , NADPH Oxidases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Reactive Oxygen Species/metabolism
9.
Adv Sci (Weinh) ; 7(10): 1903657, 2020 May.
Article in English | MEDLINE | ID: mdl-32440483

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.

10.
Theranostics ; 10(9): 3980-3993, 2020.
Article in English | MEDLINE | ID: mdl-32226533

ABSTRACT

Rationale: Transmembrane member 16A (TMEM16A) is a component of calcium-activated chloride channels that regulate vascular smooth muscle cell (SMC) proliferation and remodeling. Autophagy, a highly conserved cellular catabolic process in eukaryotes, exerts important physiological functions in vascular SMCs. In the current study, we investigated the relationship between TMEM16A and autophagy during vascular remodeling. Methods: We generated a transgenic mouse that overexpresses TMEM16A specifically in vascular SMCs to verify the role of TMEM16A in vascular remodeling. Techniques employed included immunofluorescence, electron microscopy, co-immunoprecipitation, and Western blotting. Results: Autophagy was activated in aortas from angiotensin II (AngII)-induced hypertensive mice with decreased TMEM16A expression. The numbers of light chain 3B (LC3B)-positive puncta in aortas correlated with the medial cross-sectional aorta areas and TMEM16A expression during hypertension. SMC-specific TMEM16A overexpression markedly inhibited AngII-induced autophagy in mouse aortas. Moreover, in mouse aortic SMCs (MASMCs), AngII-induced autophagosome formation and autophagic flux were blocked by TMEM16A upregulation and were promoted by TMEM16A knockdown. The effect of TMEM16A on autophagy was independent of the mTOR pathway, but was associated with reduced kinase activity of the vacuolar protein sorting 34 (VPS34) enzyme. Overexpression of VPS34 attenuated the effect of TMEM16A overexpression on MASMC proliferation, while the effect of TMEM16A downregulation was abrogated by a VPS34 inhibitor. Further, co-immunoprecipitation assays revealed that TMEM16A interacts with p62. TMEM16A overexpression inhibited AngII-induced p62-Bcl-2 binding and enhanced Bcl-2-Beclin-1 interactions, leading to suppression of Beclin-1/VPS34 complex formation. However, TMEM16A downregulation showed the opposite effects. Conclusion: TMEM16A regulates the four-way interaction between p62, Bcl-2, Beclin-1, and VPS34, and coordinately prevents vascular autophagy and remodeling.


Subject(s)
Anoctamin-1/physiology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling , Animals , Autophagy , Cells, Cultured , Class III Phosphatidylinositol 3-Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription Factor TFIIH/metabolism
11.
Cell Death Dis ; 9(6): 610, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29795190

ABSTRACT

The development of nephrotoxicity largely limits the clinical use of chemotherapy. MiRNAs are able to target various genes and involved in the regulation of diverse cellular processes, including cell apoptosis and death. Our study showed that miR-181a expression was significantly increased after 5-fluorouracil (5-FU) treatment in renal mesangial cells and kidney tissue, which was associated with decreased baculoviral inhibition of apoptosis protein repeat-containing 6 (BIRC6) expression and increased apoptotic rate. Enforced miR-181a expression enhanced 5-FU-induced p53-dependent mitochondrial apoptosis, including declined Bcl-2/Bax ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase-9 and caspase-3 activation. However, inhibition of miR-181a was associated with reduced p53-mediated mitochondrial apoptosis induced by 5-FU. Moreover, miR-181a increased BIRC6 downstream gene p53 protein expression and transcriptional activity by reducing ubiquitin-mediated protein degradation. We found that miR-181a directly targeted 3'-UTR of BIRC6 mRNA and negatively regulated BIRC6 expression. In vivo study, knockdown of miR-181a with adeno-associated virus harboring miR-181a-tough decoy attenuated 5-FU-induced renal cell apoptosis, inflammation and kidney injury. In conclusion, these results demonstrate that miR-181a increases p53 protein expression and transcriptional activity by targeting BIRC6 and promotes 5-FU-induced apoptosis in mesangial cells. Inhibition of miR-181a ameliorates 5-FU-induced nephrotoxicity, suggesting that miR-181a may be a novel therapeutic target for nephrotoxicity treatment during chemotherapy.


Subject(s)
Apoptosis , Fluorouracil/adverse effects , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney/pathology , Mesangial Cells/pathology , MicroRNAs/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , HCT116 Cells , Humans , Inflammation/pathology , Inhibitor of Apoptosis Proteins/metabolism , Mesangial Cells/drug effects , Mice, Inbred C57BL , MicroRNAs/genetics , Mitochondria/metabolism , Signal Transduction , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
12.
Biochem Biophys Res Commun ; 495(2): 1864-1870, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29225169

ABSTRACT

Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.


Subject(s)
Aortitis/immunology , Calcineurin/immunology , Calcium/immunology , Cell Adhesion Molecules/immunology , Endothelium, Vascular/immunology , NFATC Transcription Factors/immunology , ORAI1 Protein/immunology , Animals , Aortitis/pathology , Cells, Cultured , Down-Regulation/immunology , Humans , Inflammation Mediators/immunology , Metabolic Networks and Pathways/immunology , Mice , Mice, Inbred C57BL
13.
J Cell Mol Med ; 21(5): 904-915, 2017 05.
Article in English | MEDLINE | ID: mdl-27878958

ABSTRACT

Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.


Subject(s)
Calcium/metabolism , Carcinoma, Hepatocellular/metabolism , Fluorouracil/pharmacology , Liver Neoplasms/metabolism , ORAI1 Protein/metabolism , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Down-Regulation/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
14.
Atherosclerosis ; 254: 133-141, 2016 11.
Article in English | MEDLINE | ID: mdl-27741419

ABSTRACT

BACKGROUND AND AIMS: Macrophage-derived foam cell formation (MFCF) is a crucial step in the pathogenesis of atherosclerosis. Uptake of oxidized low-density lipoprotein (oxLDL) by scavenger receptors is indispensable for MFCF. Endophilin-A2 has been reported to regulate clathrin-mediated endocytosis (CME). In this study, we tested the hypothesis that endophilin-A2 regulates oxLDL uptake and MFCF by mediating CME of oxLDL-scavenger receptor complexes. METHODS: In vitro MFCF was induced by oxLDL treatment. Involvement of endophilin-A2 in oxLDL cytomembrane binding, cellular uptake, and MFCF was evaluated by manipulation of endophilin-A2. RESULTS: Endophilin-A2 was involved in MFCF via scavenger receptor CD36 and scavenger receptor-A (SR-A)-mediated positive feedback pathways. We observed that oxLDL triggered interaction of endophilin-A2 with CD36 or SR-A, and induced an endophilin-A2-dependent activation of the apoptosis signal-regulating kinase-1 (ASK1)/Jun N-terminal kinase (JNK)/p38 signaling pathway. The activation of ASK1-JNK/p38 signal increased expression of both CD36 and SR-A, which promoted oxLDL cytomembrane binding, cellular uptake, and MFCF. In the absence of oxLDL, endophilin-A2 up-regulated the expression of receptors and Dil-oxLDL binding and uptake, but not the intracellular accumulation of lipids. In the presence of oxLDL, the CME inhibitors pitstop2 and ikarugamycin mimicked the inhibiting effect of endophilin-A2 knockdown and eliminated the elevating effect of endophilin-A2 overexpression on oxLDL uptake and MFCF. CONCLUSIONS: Endophilin-A2 was identified as a novel molecule regulating MFCF by mechanisms attributable to CME and beyond CME.


Subject(s)
Foam Cells/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/cytology , Receptors, Scavenger/metabolism , Animals , CD36 Antigens/metabolism , Endocytosis , Gene Expression/drug effects , Gene Expression Regulation , Healthy Volunteers , Humans , Lactams/chemistry , Lipids/chemistry , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Male , Mice , Mice, Inbred C57BL , Scavenger Receptors, Class A/metabolism , Sulfonamides/chemistry , Thiazolidines/chemistry
15.
J Huazhong Univ Sci Technolog Med Sci ; 36(4): 607-613, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27465341

ABSTRACT

This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents.


Subject(s)
Capsid Proteins/genetics , Computational Biology , Enterovirus/genetics , Epitopes, B-Lymphocyte/genetics , Amino Acid Sequence , Capsid Proteins/immunology , Enterovirus/pathogenicity , Epitopes, B-Lymphocyte/immunology , Humans
16.
Neuropharmacology ; 110(Pt A): 181-189, 2016 11.
Article in English | MEDLINE | ID: mdl-27460962

ABSTRACT

ClC-3 chloride channel/antiporter has been demonstrated to play an important role in synaptic transmission in central nervous system. However, its expression and function in sensory neurons is poorly understood. In present work, we found that ClC-3 is expressed at high levels in dorsal root ganglia (DRG). Co-immunofluorescent data showed that ClC-3 is mainly distributed in A- and C-type nociceptive neurons. ClC-3 expression in DRG is decreased in the spared nerve injury (SNI) model of neuropathic pain. Knockdown of local ClC-3 in DRG neurons with siRNA increased mechanical sensitivity in naïve rats, while overexpression of ClC-3 reversed the hypersensitivity to mechanical stimuli after peripheral nerve injury. In addition, genetic deletion of ClC-3 enhances mouse mechanical sensitivity but did not affect thermal and cold threshold. Restoration of ClC-3 expression in ClC-3 deficient mice reversed the mechanical sensitivity. Mechanistically, loss of ClC-3 enhanced mechanical sensitivity through increasing the excitability of DRG neurons. These data indicate that ClC-3 is an endogenous inhibitor of neuropathic pain development. Downregulation of ClC-3 by peripheral nerve injury is critical for mechanical hypersensitivity. Our findings suggest that ClC-3 is a novel therapeutic target for treating neuropathic pain.


Subject(s)
Chloride Channels/metabolism , Down-Regulation/physiology , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Peripheral Nerve Injuries/metabolism , Animals , Ganglia, Spinal/pathology , Hyperalgesia/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Pain Measurement/methods , Peripheral Nerve Injuries/pathology , Rats , Rats, Sprague-Dawley
17.
Circ J ; 80(4): 1024-33, 2016.
Article in English | MEDLINE | ID: mdl-26911455

ABSTRACT

BACKGROUND: Previous work has demonstrated that the volume-regulated chloride channel is activated during foam cell formation, and inhibition of chloride movement prevents intracellular lipid accumulation. However, the mechanism explaining how chloride movement promotes foam cell formation is not clear. METHODS AND RESULTS: Foam cell formation was determined by Oil Red O staining. Western blotting and co-immunoprecipitation were used to examine protein expression and protein-protein interaction. [Cl(-)]iwas measured using 6-methoxy-N-ethylquinolinium iodide dye. The results showed that [Cl(-)]iwas decreased in monocytes/macrophages from patients with hypercholesterolemia and from apoE(-/-)mice fed with a high-fat diet. Lowering [Cl(-)]iupregulated scavenger receptor A (SR-A) expression, increased the binding and uptake of oxLDL, enhanced pro-inflammatory cytokine production and subsequently accelerated foam cell formation in macrophages from humans and mice. In addition, low Cl(-)solution stimulated the activation of JNK and p38 mitogen-activated protein kinases. Inhibition of JNK and p38 blocked Cl(-)reduced medium-induced SR-A expression and lipid accumulation. In contrast, reduction of [Cl(-)]ipromoted the interaction of SR-A with caveolin-1, thus facilitating caveolin-1-dependent SR-A endocytosis. Moreover, disruption of caveolae attenuated SR-A internalization, JNK and p38 activation, and ultimately prevented SR-A expression and foam cell formation stimulated by low Cl(-)medium. CONCLUSIONS: This data provide strong evidence that reduction of [Cl(-)]iis a critical contributor to intracellular lipid accumulation, suggesting that modulation of [Cl(-)]iis a novel avenue to prevent foam cell formation and atherosclerosis.


Subject(s)
Chlorides/metabolism , Foam Cells/metabolism , Hypercholesterolemia/metabolism , Animals , Apolipoproteins E/deficiency , Caveolin 1/genetics , Caveolin 1/metabolism , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Enzyme Activation/drug effects , Enzyme Activation/genetics , Foam Cells/pathology , Hypercholesterolemia/chemically induced , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mice , Mice, Knockout , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Arterioscler Thromb Vasc Biol ; 36(4): 618-28, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26916730

ABSTRACT

OBJECTIVE: To determine the role of orai1 store-operated Ca(2+) entry in foam cell formation and atherogenesis. APPROACH AND RESULTS: Acute administration of oxidized low-density lipoprotein (oxLDL) activates an orai1-dependent Ca(2+) entry in macrophages. Chelation of intracellular Ca(2+), inhibition of orai1 store-operated Ca(2+) entry, or knockdown of orai1 dramatically inhibited oxLDL-induced upregulation of scavenger receptor A, uptake of modified LDL, and foam cell formation. Orai1-dependent Ca(2+) entry induces scavenger receptor A expression and foam cell formation through activation of calcineurin but not calmodulin kinase II. Activation of nuclear factor of activated T cells is not involved in calcineurin signaling to foam cell formation. However, oxLDL dephosohorylates and activates apoptosis signal-regulating kinase 1 in macrophages. Orai1 knockdown prevents oxLDL-induced apoptosis signal-regulating kinase 1 activation. Knockdown of apoptosis signal-regulating kinase 1, or inhibition of its downstream effectors, JNK and p38 mitogen-activated protein kinase, reduces scavenger receptor A expression and foam cell formation. Notably, orai1 expression is increased in atherosclerotic plaques of apolipoprotein E(-/-) mice fed with high-cholesterol diet. Knockdown of orai1 with adenovirus harboring orai1 siRNA or inhibition of orai1 Ca(2+) entry with SKF96365 for 4 weeks dramatically inhibits atherosclerotic plaque development in high-cholesterol diet feeding apolipoprotein E(-/-) mice. In addition, inhibition of orai1 Ca(2+) entry prevents macrophage apoptosis in atherosclerotic plaque. Moreover, the expression of inflammatory genes in atherosclerotic lesions and the infiltration of myeloid cells into the aortic sinus plaques are decreased after blocking orai1 signaling. CONCLUSIONS: Orai1-dependent Ca(2+) entry promotes atherogenesis possibly by promoting foam cell formation and vascular inflammation, rendering orai1 Ca(2+) channel a potential therapeutic target against atherosclerosis.


Subject(s)
Anticholesteremic Agents/pharmacology , Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium/metabolism , Cholesterol/metabolism , Foam Cells/drug effects , Macrophages, Peritoneal/drug effects , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/drug effects , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Calcineurin/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Chelating Agents/pharmacology , Calcium Signaling/drug effects , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Foam Cells/metabolism , Foam Cells/pathology , Humans , Inflammation Mediators/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipoproteins, LDL/pharmacology , MAP Kinase Kinase Kinase 5/metabolism , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Mice, Knockout , ORAI1 Protein , Plaque, Atherosclerotic , RNA Interference , Scavenger Receptors, Class A/metabolism , Time Factors , Transfection , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Gut ; 63(10): 1587-95, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24440986

ABSTRACT

BACKGROUND: ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE: To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN: After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS: ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS: A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.


Subject(s)
Antiporters/metabolism , Chloride Channels/physiology , Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Gastrointestinal Tract/metabolism , Paneth Cells/pathology , Animals , Antiporters/drug effects , Apoptosis , Blotting, Western , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Crohn Disease/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Electrophoresis, Polyacrylamide Gel , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Humans , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Mice, Knockout , Trinitrobenzenesulfonic Acid/toxicity
20.
Hypertension ; 60(5): 1287-93, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23006728

ABSTRACT

Recent evidence suggested that ClC-3 channel/antiporter is involved in regulation of nuclear factor (NF)-κB activation. However, the mechanism explaining how ClC-3 modulates NF-κB signaling is not well understood. We hypothesized that ClC-3-dependent alteration of intracellular chloride concentration ([Cl(-)](i)) underlies the effect of ClC-3 on NF-κB activity in endothelial cells. Here, we found that reduction of [Cl(-)](i) increased tumor necrosis factor-α (TNFα)-induced expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 and adhesion of monocytes to endothelial cells (P<0.05; n=6). In Cl(-) reduced solutions, TNFα-evoked IκB kinase complex ß and inhibitors of κBα phosphorylation, inhibitors of κBα degradation, and NF-κB nuclear translocation were enhanced. In addition, TNFα and interleukin 1ß could activate an outward rectifying Cl(-) current in human umbilical vein endothelial cells and mouse aortic endothelial cells. Knockdown or genetic deletion of ClC-3 inhibited or abolished this Cl(-) conductance. Moreover, Cl(-) channel blockers, ClC-3 knockdown or knockout remarkably reduced TNFα-induced intercellular adhesion molecule 1 and vascular cell adhesion molecule 1expression, monocytes to endothelial cell adhesion, and NF-κB activation (P<0.01; n=6). Furthermore, TNFα-induced vascular inflammation and neutrophil infiltration into the lung and liver were obviously attenuated in ClC-3 knockout mice (P<0.01; n=7). Our results demonstrated that decrease of [Cl(-)](i) induced by ClC-3-dependent Cl(-) efflux promotes NF-κB activation and thus potentiates TNFα-induced vascular inflammation, suggesting that inhibition of ClC-3-dependent Cl(-) current or modification of intracellular Cl(-) content may be a novel therapeutic approach for inflammatory diseases.


Subject(s)
Chlorides/metabolism , Endothelial Cells/metabolism , NF-kappa B/metabolism , Signal Transduction , Animals , Blotting, Western , Cell Adhesion/drug effects , Cells, Cultured , Chloride Channels/genetics , Chloride Channels/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1beta/pharmacology , Intracellular Space/metabolism , Male , Mice , Mice, Knockout , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Neutrophil Infiltration/drug effects , RNA Interference , Tumor Necrosis Factor-alpha/pharmacology , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...