Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Chem Asian J ; : e202400177, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639820

ABSTRACT

Lithium-sulfur batteries (Li-S) have possessed gratifying development in the past decade due to their high theoretical energy density. However, the severe polysulfide shuttling provokes undesirable self-discharge effect, leading to low energy efficiency in Li-S batteries. Herein, an interlayer composed of oxygen-rich carbon nanosheets (OCN) derived from bagasse is elaborated to suppress the shuttle effect and reduce the resultant self-discharge effect. The OCN interlayer is able to physically block the shuttling behavior of polysulfides and its oxygen-rich functional groups can strongly interact with polysulfides via O-S bonds to chemically immobilize mobile polysulfides. The self-discharge test for seven days further shows that the self-discahrge rate is diminished by impressive 93 %. As a result, Li-S batteries with the OCN interlayer achieve an ultrahigh discharge specific capacity of 710 mAh g-1 at a high mass loading of 7.18 mg. The work provides a facile method for designing functional interlayers and opens a new avenue for realizing Li-S batteries with high energy efficiency.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38470720

ABSTRACT

Disordered reactive oxygen/nitrogen species are a common occurrence in various diseases, which usually cause cellular oxidative damage and inflammation. Despite the wide range of applications for biomimetic nanoparticles with antioxidant or anti-inflammatory properties, designs that seamlessly integrate these two abilities with a synergistic effect in a simple manner are seldom reported. In this study, we developed a novel PEI-Mn composite nanoparticle (PM NP) using a chelation method, and the curcumin was loaded onto PM NPs via metal-phenol coordination to form PEI-Mn@curcumin nanoparticles (PMC NPs). PMC NPs possessed excellent dispersibility and cytocompatibility, was engineered to serve as an effective nanozyme, and exhibited specific SOD-like and CAT-like activities. In addition, the incorporation of curcumin granted PMC NPs the ability to effectively suppress the expression of inflammatory cytokines in microglia induced by LPS. As curcumin also has antioxidant properties, it further amplified the synergistic efficiency of ROS scavenging. Significantly, PMC NPs effectively scavenged ROS triggered by H2O2 in SIM-A9 microglia cells and Neuro-2a cells. PMC NPs also considerably mitigated DNA and lipid oxidation in Neuro-2a cells and demonstrated an increase in cell viability under various H2O2 concentrations. These properties suggest that PMC NPs have significant potential in addressing excessive ROS and inflammation related to neural diseases.

3.
Food Sci Biotechnol ; 33(1): 91-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186628

ABSTRACT

Licorice from Glycyrrhiza uralensis roots is used in foods and medicines. Although we are aware that licorice roots and leaves have distinct material compositions, the specific reasons for these differences remain unknown. Comparison of the metabolomes and transcriptomes between the leaves and roots revealed flavonoids and triterpenoid saponins were significantly different. Isoflavones were enriched in roots because of upregulation of genes encoding chalcone isomerase and flavone synthase, which are involved in isoflavone synthesis. Six triterpenoid saponins were significantly enriched only in the roots. The leaves did not accumulate glycyrrhetinic acid because of low expression levels of genes involved in its synthesis. A gene encoding a UDP glycosyltransferase, which likely catalyzes the key step in the transformation of glycyrrhetinic acid to glycyrrhizin, was screened. Our results provide information about the differences in flavonoid and triterpenoid synthesis between roots and leaves, and highlight targets for genetic engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01467-y.

4.
J Youth Adolesc ; 53(3): 581-594, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147187

ABSTRACT

The factors influencing popular adolescents to defend victims require further exploration, particularly concerning their traits and the desire for higher peer status. In this one-year longitudinal study, 2464 Chinese adolescents (48.50% girls, Mage = 13.40 years, SD = 0.61) were investigated to examine the relationship between peer-nominated popularity, manipulative traits, desired popularity, and defending behaviors. The results revealed that peer-nominated popularity had a positive predictive effect on Chinese adolescents' defending behaviors. Furthermore, this longitudinal association was accentuated by desired popularity and manipulative traits in girls but was not in boys. Specifically, popular girls with high desired popularity demonstrated a higher likelihood of engaging in defending behaviors compared to other girls. These findings carry significant implications for understanding the influencing factors behind peer status and adolescents' defending behaviors.


Subject(s)
Adolescent Behavior , Peer Group , Male , Female , Humans , Adolescent , Longitudinal Studies , Gender Identity , China
5.
J Youth Adolesc ; 52(11): 2285-2299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37453979

ABSTRACT

Although social preference promotes adolescents' defending behaviors, its potential mechanisms across gender cliques remain unclear from the group dynamic perspective. This study investigated 2470 Chinese early adolescents (49% girls, Mage = 14.40, SD = 0.58) to explore how social preference and clique hierarchy are associated with defending behaviors and whether these associations differ across gender-specific cliques. The results revealed that social preference was positively related to defending behaviors in boys' cliques, but negatively in girls' cliques. Furthermore, the association was strengthened by hierarchization in boys' cliques but was weakened in girls' cliques, while the status structure strengthened the association in boys' but not girls' cliques. These findings hold crucial implications for understanding and promoting defending behaviors among adolescents.


Subject(s)
Adolescent Behavior , Male , Humans , Adolescent , Sex Factors , Social Behavior Disorders
6.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176152

ABSTRACT

Lysine malonylation (Kmal) is an evolutionarily conserved post-translational modification (PTM) that has been demonstrated to be involved in cellular and organismal metabolism. However, the role that Kmal plays in response to drought stress of the terrestrial cyanobacteria N. flagelliforme is still unknown. In this study, we performed the first proteomic analysis of Kmal in N. flagelliforme under different drought stresses using LC-MS/MS. In total, 421 malonylated lysine residues were found in 236 different proteins. GO and KEGG enrichment analysis indicated that these malonylated proteins were highly enriched in several metabolic pathways, including carbon metabolism and photosynthesis. Decreased malonylation levels were found to hinder the reception and transmission of light energy and CO2 fixation, which led to a decrease in photosynthetic activity. Kmal was also shown to inhibit the flux of the TCA cycle and activate the gluconeogenesis pathway in response to drought stress. Furthermore, malonylated antioxidant enzymes and antioxidants were synergistically involved in reactive oxygen species (ROS) scavenging. Malonylation was involved in lipid degradation and amino acid biosynthesis as part of drought stress adaptation. This work represents the first comprehensive investigation of the role of malonylation in dehydrated N. flagelliforme, providing an important resource for understanding the drought tolerance mechanism of this organism.


Subject(s)
Lysine , Nostoc , Lysine/metabolism , Gluconeogenesis , Proteomics , Droughts , Chromatography, Liquid , Malonates , Tandem Mass Spectrometry , Proteins/metabolism , Photosynthesis
7.
DNA Res ; 30(4)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37220653

ABSTRACT

Prunus mongolica is an ecologically and economically important xerophytic tree native to Northwest China. Here, we report a high-quality, chromosome-level P. mongolica genome assembly integrating PacBio high-fidelity sequencing and Hi-C technology. The assembled genome was 233.17 Mb in size, with 98.89% assigned to eight pseudochromosomes. The genome had contig and scaffold N50s of 24.33 Mb and 26.54 Mb, respectively, a BUSCO completeness score of 98.76%, and CEGMA indicated that 98.47% of the assembled genome was reliably annotated. The genome contained a total of 88.54 Mb (37.97%) of repetitive sequences and 23,798 protein-coding genes. We found that P. mongolica experienced two whole-genome duplications, with the most recent event occurring ~3.57 million years ago. Phylogenetic and chromosome syntenic analyses revealed that P. mongolica was closely related to P. persica and P. dulcis. Furthermore, we identified a number of candidate genes involved in drought tolerance and fatty acid biosynthesis. These candidate genes are likely to prove useful in studies of drought tolerance and fatty acid biosynthesis in P. mongolica, and will provide important genetic resources for molecular breeding and improvement experiments in Prunus species. This high-quality reference genome will also accelerate the study of the adaptation of xerophytic plants to drought.


Subject(s)
Prunus , Prunus/genetics , Phylogeny , Chromosomes , Genome , Fatty Acids , Genome, Plant
8.
Food Chem ; 409: 135279, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36603476

ABSTRACT

This study aimed to investigate the effect of hydroxyl radical oxidizing system (HROS) and endogenous oxidizing system (EOS, i.e., frozen storage at -20 °C) on protein oxidation, digestive properties, and peptide modification of myofibrillar proteins (MPs) in bighead carp (Hypophthalmichthys nobilis) fillets. The oxidation degree increased with the frozen time and H2O2 concentration as evidenced by carbonyl group generation and sulfhydryl group loss in MPs. The digestibility of protein declined gradually during frozen storage, while it increased after treatment with 5 mM H2O2 compared with no H2O2 intervention. More modification numbers and types were observed in the EOS group than HROS in digested MPs peptides, which might be due to the complexity of the frozen fillet system such as the presence of lipid. The potential conversion of α-aminoadipic semialdehyde (AAS) to α-aminoadipic acids (AAA) was observed in HROS. Additionally, the myosin heavy chain was more susceptible to oxidation among all MPs by EOS oxidation.


Subject(s)
Carps , Cyprinidae , Animals , Hydroxyl Radical , Oxidation-Reduction , Freezing
9.
ISA Trans ; 136: 727-741, 2023 May.
Article in English | MEDLINE | ID: mdl-36424194

ABSTRACT

This paper focuses on the nonminimum-phase laser pointing system's disturbances and uncertainties rejection problems on moving platforms. Moving platforms cause a variety of noticeable vibrations that substantially impair pointing accuracy. Additionally, the disturbance-observer-based control approaches currently in use sacrifice the desired disturbance suppression effects, stability margins, or tracking characteristics due to the nonminimum-phase laser pointing system. This paper suggests an adjustable disturbance-observer-based control strategy with dual filters to obtain lossless and adjustable disturbance suppression effects without sacrificing stability margins or tracking characteristics. The closed-loop controller and forward plant are presented to reduce the laser pointing system's nonminimum-phase properties. An additional flexible filter is added to deal with the weakened nonminimum-phase system. Both filters are uniformly proposed depending on various disturbances brought on by moving platforms and work together to accomplish lossless desired disturbance suppression effects. The analyses and experiments show that the suggested approach can accomplish the lossless and adjustable disturbance suppression effects in the nonminimum-phase laser pointing system, which cancels out many more disturbances and uncertainties than the current methods.

10.
Front Immunol ; 13: 1064874, 2022.
Article in English | MEDLINE | ID: mdl-36505456

ABSTRACT

Background: Clinically, only a minority of patients benefit from immunotherapy and few efficient biomarkers have been identified to distinguish patients who would respond to immunotherapy. The tumor microenvironment (TME) is reported to contribute to immunotherapy response, but details remain unknown. We aimed to construct a prognostic model based on the TME of lung adenocarcinoma (LUAD) to predict the prognosis and immunotherapy efficacy. Methods: We integrated computational algorithms to describe the immune infiltrative landscape of LUAD patients. With the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses, we developed a LUAD tumor microenvironment prognostic signature (LATPS). Subsequently, the immune characteristics and the benefit of immunotherapy in LATPS-defined subgroups were analyzed. RNA sequencing of tumor samples from 28 lung cancer patients treated with anti-PD-1 therapy was conducted to verify the predictive value of the LATPS. Results: We constructed the LATPS grounded on four genes, including UBE2T, KRT6A, IRX2, and CD3D. The LATPS-low subgroup had a better overall survival (OS) and tended to have a hot immune phenotype, which was characterized by an elevated abundance of immune cell infiltration and increased activity of immune-related pathways. Additionally, tumor immune dysfunction and exclusion (TIDE) score was markedly decreased in the LATPS-low subgroup, indicating an enhanced opportunity to benefit from immunotherapy. Survival analysis in 28 advanced lung cancer patients treated with an anti-PD-1 regimen at Nanfang hospital revealed that the LATPS-low subgroup had better immunotherapy benefit. Conclusion: LATPS is an effective predictor to distinguish survival, immune characteristics, and immunotherapy benefit in LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Tumor Microenvironment , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Ubiquitin-Conjugating Enzymes
11.
Front Plant Sci ; 13: 1006303, 2022.
Article in English | MEDLINE | ID: mdl-36438150

ABSTRACT

Sabina chinensis is a woody plant with important ecological functions in different regions of China, but its essential oils (EO) against plant pathogenic fungi remain largely undetermined. The purpose of our study was to assess the chemical composition and antifungal activity of S. chinensis EO based on optimization of the extraction process. In this study, an actionable and effective model with the experimental results and identified optimum conditions (crushing degree of 20 mesh, liquid-solid ratio of 10.1:1, immersion time of 9.1 h) was established successfully to achieve an extraction yield of 0.54%, which was basically consistent with the theoretical value. A total of 26 compounds were identified using headspace gas chromatography-mass spectrometry (GC-MS) and showed that the major constituent was ß-phellandrene (26.64-39.26%), followed by terpinen-4-ol (6.53-11.89%), bornyl acetate (6.13-10.53%), etc. For Petri plate assays, our experiments found for the first time that S. chinensis EO revealed high and long-term antifungal activity against the tested strains, including Fusarium oxysporum and Fusarium incarnatum, at EC50 values of 1.42 and 1.15 µL/mL, which especially reached approximately 76% and 90% growth inhibition at a dose of 0.2 µL/mL, respectively. Furthermore, the antifungal activity of EO from different harvest periods showed remarkable variation. The orthogonal partial least-squares discriminant analysis (OPLS-DA) method revealed 11 metabolites with chemical marker components, and 5 of its potential antifungal activities, terpinen-4-ol, α-terpineol, α-elemol, γ-eudesmol, and bornyl acetate, were strongly correlated with the mycelial inhibition rate. In total, this study explored the antifungal activity of EO against root rot fungus as a potential fungicide and provided valuable information into developing potential products from natural agents.

12.
Molecules ; 27(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36014550

ABSTRACT

This investigation is motivated by increasing interest in the development of magnetically ordered pseudocapacitors (MOPC), which exhibit interesting magnetocapacitive effects. Here, advanced pseudocapacitive properties of magnetic CuFe2O4 nanoparticles in negative potential range are reported, suggesting that CuFe2O4 is a promising MOPC and advanced negative electrode material for supercapacitors. A high capacitance of 2.76 F cm-2 is achieved at a low electrode resistance in a relatively large potential window of 0.8 V. The cyclic voltammograms and galvanostatic charge-discharge data show nearly ideal pseudocapacitive behavior. Good electrochemical performance is achieved at a high active mass loading due to the use of chelating molecules of ammonium salt of purpuric acid (ASPA) as a co-dispersant for CuFe2O4 nanoparticles and conductive multiwalled carbon nanotube (MCNT) additives. The adsorption of ASPA on different materials is linked to structural features of ASPA, which allows for different interaction and adsorption mechanisms. The combination of advanced magnetic and pseudocapacitive properties in a negative potential range in a single MOPC material provides a platform for various effects related to the influence of pseudocapacitive/magnetic properties on magnetic/pseudocapacitive behavior.

13.
Foods ; 11(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35741996

ABSTRACT

Nostoc flagelliforme is a kind of terrestrial edible cyanobacteria with important ecological and economic value which has developed special mechanisms to adapt to drought conditions. However, the specific mechanism of lipidome changes in drought tolerance of N. flagelliforme has not been well understood. In this study, the ultra-high-performance liquid chromatography and mass spectrometry were employed to analyze the lipidome changes of N. flagelliforme under dehydration. A total of 853 lipid molecules were identified, of which 171 were significantly different from that of the control group. The digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) ratio was increased. The amount of wax ester (WE) was sharply decreased during drought stress, while Co (Q10) was accumulated. The levels of odd chain fatty acids (OCFAs) were increased under dehydration, positively responding to drought stress according to the energy metabolism state. In conclusion, the lipidomic data corroborated that oxidation, degradation, and biosynthesis of membrane lipids took place during lipid metabolism, which can respond to drought stress through the transformation of energy and substances. Besides, we constructed a lipid metabolic model demonstrating the regulatory mechanism of drought stress in N. flagelliforme. The present study provides insight into the defense strategies of cyanobacteria in lipid metabolic pathways.

14.
BMC Plant Biol ; 22(1): 162, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365086

ABSTRACT

BACKGROUND: Drought is an important abiotic stress that constrains the growth of many species. Despite extensive study in model organisms, the underlying mechanisms of drought tolerance in Nostoc flagelliforme remain elusive. RESULTS: We characterized the drought adaptation of N. flagelliforme by a combination of proteomics and qRT-PCR. A total of 351 differentially expressed proteins involved in drought stress adaptation were identified. It was found that the expression of several nutrient influx transporters was increased, including molybdate ABC transporter substrate binding protein (modA), sulfate ABC transporter substrate-binding protein (sbp) and nitrate ABC transporter (ntrB), while that of efflux transporters for toxic substances was also increased, including arsenic transporting ATPase (ArsA), potassium transporter (TrkA) and iron ABC transporter substrate-binding protein (VacB). Additionally, photosynthetic components were reduced while sugars built up during drought stress. Non-enzymatic antioxidants, orange carotenoid protein (OCP) homologs, cytochrome P450 (CYP450), proline (Pro) and ascorbic acid (AsA) were all altered during drought stress and may play important roles in scavenging reactive oxygen species (ROS). CONCLUSION: In this study, N. flagelliforme may regulates its adaptation to drought stress through the changes of protein expression in photosynthesis, energy metabolism, transport, protein synthesis and degradation and antioxidation. HIGHLIGHTS: • A total of 351 DEPs involved in adaptation to drought stress were identified. • Changes in the expression of six OCP homologs were found in response to drought stress. • Differential expression of transporters played an important role in drought stress adaptation. • Most PSII proteins were downregulated, while PSI proteins were unchanged in response to drought stress. • Sugar metabolism was upregulated in response to drought stress.


Subject(s)
Antioxidants , Droughts , Energy Metabolism , Nostoc , Proteome
15.
Molecules ; 27(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35268760

ABSTRACT

The high theoretical capacitance of MnO2 renders it a promising material for the cathodes of asymmetric supercapacitors. The good dispersion of MnO2 and conductive additives in a nanocomposite electrode is a key factor for efficient electrode performance. This article describes, for the first time, the application of rhamnolipids (RL) as efficient natural biosurfactants for the fabrication of nanocomposite MnO2-carbon nanotube electrodes for supercapacitors. RL act as co-dispersants for MnO2 and carbon nanotubes and facilitate their efficient mixing, which allows for advanced capacitive properties at an active mass of 40 mg cm-2 in Na2SO4 electrolytes. The highest capacitance obtained from the cyclic voltammetry data at a scan rate of 2 mV s-1 is 8.10 F cm-2 (202.6 F g-1). The highest capacitance obtained from the galvanostatic charge-discharge data at a current density of 3 mA cm-2 is 8.65 F cm-2 (216.16 F g-1). The obtained capacitances are higher than the capacitances of MnO2-based electrodes of the same active mass reported in the literature. The approach developed in this investigation is simple compared to other techniques used for the fabrication of electrodes with high active mass. It offers advantages of using a biocompatible RL biosurfactant.


Subject(s)
Nanotubes, Carbon , Electrodes , Glycolipids , Manganese Compounds , Oxides
16.
J Proteome Res ; 21(2): 482-493, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35020403

ABSTRACT

Acetylation represents an extensively occurring protein post-translational modification (PTM) that plays a key role in many cellular physiological and biochemical processes. However, studies on PTMs such as acetylation of lysine (LysAc) in cyanobacteria are still rare. In this study, a quantitative LysAc approach (acetylome) on the strains of Nostoc flagelliforme subjected to different dehydration treatments was conducted. We observed that starch contents were significantly accumulated due to dehydration treatments, and we identified 2474 acetylpeptides and 1060 acetylproteins based on acetylome analysis. Furthermore, an integrative analysis was performed on acetylome and nontargeted metabolism, and the results showed that many KEGG terms were overlapped for both omics analyses, including starch and sucrose metabolism, transporter activity, and carbon metabolism. In addition, time series clustering was analyzed, and some proteins related to carbon metabolism and the ROS scavenging system were significantly enriched in the list of differentially abundant acetylproteins (DAAPs). These protein expression levels were further tested by qPCR. A working model was finally proposed to show the biological roles of protein acetylation from carbon metabolism and the ROS scavenging system in response to dehydration in N. flagelliforme. We highlighted that LysAc was essential for the regulation of key metabolic enzymes in the dehydration stress response.


Subject(s)
Carbon , Dehydration , Acetylation , Humans , Nostoc , Protein Processing, Post-Translational , Reactive Oxygen Species
17.
ISA Trans ; 122: 79-87, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33941379

ABSTRACT

Non-holonomic reference trajectories and uncertainties are typically encountered in a class of mechanical systems. For such systems, this paper investigates the development of a novel explicit adaptive robust controller. By employing the structure of the Udwadia controller, the designed controller can deal with holonomic and non-holonomic reference trajectories in a unified manner. To avoid degradation of performance due to uncertainties, an observer is proposed to identify the uncertainties; the observer is designed using a fuzzy cerebellar model articulation controller neural network. A robust term is designed to restrain the initial deviations and to enhance the robustness of systems. Moreover, a compensatory term is designed to compensate for the residual errors resulted from the uncertainty observer. Rigorous theoretical analysis of the proposed controller is verified via the Lyapunov stability method, and an illustrative example is presented to demonstrate the effectiveness of the designed controller.

18.
Cancer Immunol Immunother ; 71(2): 399-415, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34181042

ABSTRACT

Pulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung/pathology , Immunotherapy/methods , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Pulmonary Surfactant-Associated Protein A/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Computational Biology , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis , Pulmonary Surfactant-Associated Protein A/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Materials (Basel) ; 14(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072315

ABSTRACT

MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high areal capacitance (CS). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon nanotube (CNT) electrodes, which show CS of 5.52 F cm-2 in the negative potential range in 0.5 M Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm-2 due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high CS of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.

20.
ACS Omega ; 6(21): 13554-13566, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34095650

ABSTRACT

Terrestrial cyanobacteria, originated from aquatic cyanobacteria, exhibit a unique mechanism for drought adaptation during long-term evolution. To elucidate this diverse adaptive mechanism exhibited by terrestrial cyanobacteria from the post-translation modification aspect, we performed a global phosphoproteome analysis on the abundance of phosphoproteins in response to dehydration using Nostoc flagelliforme, a kind of terrestrial cyanobacteria having strong ecological adaptability to xeric environments. A total of 329 phosphopeptides from 271 phosphoproteins with 1168 phosphorylation sites were identified. Among these, 76 differentially expressed phosphorylated proteins (DEPPs) were identified for each dehydration treatment (30, 75, and 100% water loss), compared to control. The identified DEPPs were functionally categorized to be mainly involved in a two-component signaling pathway, photosynthesis, energy and carbohydrate metabolism, and an antioxidant system. We concluded that protein phosphorylation modifications related to the reactive oxygen species (ROS) signaling pathway might play an important role in coordinating enzyme activity involved in the antioxidant system in N. flagelliforme to adapt to dehydration stress. This study provides deep insights into the extensive modification of phosphorylation in terrestrial cyanobacteria using a phosphoproteomic approach, which may help to better understand the role of protein phosphorylation in key cellular mechanisms in terrestrial cyanobacteria in response to dehydration.

SELECTION OF CITATIONS
SEARCH DETAIL
...