Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
RSC Adv ; 14(21): 15167-15177, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38741618

ABSTRACT

Significant advancements have been made in catalytic asymmetric α-C-H bond functionalization of ethers via carbenoid insertion over the past decade. Effective asymmetric catalytic systems, featuring a range of chiral metal catalysts, have been established for the enantioselective synthesis of diverse ether substrates. This has led to the generation of various enantioenriched, highly functionalized oxygen-containing structural motifs, facilitating their application in the asymmetric synthesis of bioactive natural products.

2.
Article in English | MEDLINE | ID: mdl-38676843

ABSTRACT

PURPOSE: Male cancer survivors experience confusion about fertility following cancer treatment. The aims of this study were to evaluate survivors' semen quality in different tumor type groups in China and to analyze the current situation and challenges of male cancer patients with sperm cryopreservation. METHODS: This was a multicenter retrospective study of male patients with cancer who underwent sperm cryopreservation in 16 regions of the national sperm banks over an 11-year period from 2010 to 2020. RESULTS: The number of male cancer patients with sperm cryopreservation showed an overall upward trend. The development of male cancer fertility preservation (FP) in the eastern, central, and western regions of Chinese displayed imbalance. There are seven tumor types for sperm preservation in the top incidence ten tumor types, including lymphoma, leukemia, nasopharyngeal carcinoma, sarcoma, thyroid cancer, and brain tumor. Moreover, nasopharyngeal carcinoma is a high incidence rate in China, which is related to high sperm preservation rate, different from other countries. The most percentage of males receiving sperm cryopreservation in the testicular cancers (15-39 years old) of China in 2020 was 5.55%, 1.29% in the lymphoma, and 0.39% in the leukemia. According to the type of cancer, a statistically significant lower pre-sperm density, total sperm output, and post-sperm density was observed in testicular cancers. It is worth noting that the prevalence of azoospermia 22.2% in leukemia patients attribute to urgent treatment before sperm cryopreservation. Disposition of cryopreserved sperm categories included continued storage (47.2%), discarded (9%), death (0.9%), and use (3.7%). CONCLUSION: This study provides the first comprehensive national statistical census and review of fertility preservation in male cancer patients with respect to trends, prevalence, and cancer types. The development of male cancer fertility preservation in China is imbalanced and percentage of males receiving sperm cryopreservation in the adolescent and young adult cancers was low. Sixteen human sperm banks from China analyze current problems and challenges, and then prioritize steps toward the achievement of the FP strategy framework for Healthy China 2030.

3.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055802

ABSTRACT

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/metabolism , Ubiquitin Thiolesterase
4.
Ecotoxicol Environ Saf ; 267: 115648, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37922779

ABSTRACT

Bt (Bacillus thuringiensis) maize is expected to be commercial cultivated widely in China. When Bt maize is planted near mulberry trees, it renders silkworms (Bombyx mori) vulnerable, as they belong to the same class as the Lepidoptera insects targeted by Bt maize. Cry1F has been found to be highly toxic to silkworms, particularly in their early larval stages. In this study, we aimed to assess the effects of non-lethal Cry1F exposure on the growth, immune response, and intestinal microbiota in silkworms. The results showed that feeding silkworms with mulberry leaves soaked in 100 µg/mL Cry1F for 96 h had an impact on larval body weight acquisition, leading to a decrease in cocoon and pupae weight. Cry1F exposure disrupted the intestinal integrity of silkworms by affecting the columnar cells of the midgut. The activity of detoxification enzymes (CarE, AChE, and GST) as well as antioxidant enzymes (SOD, CAT, and POD) were also affected by Cry1F. After 96 h Cry1F exposure, the evenness of the bacterial community was disrupted, resulting in alterations in the structure of the intestinal microbiota. Additionally, Cry1F exposure affected the relative expression levels of the peritrophic membrane (PM) protein and the corresponding immune pathways genes of silkworms. Most of the immune-related gene expressions were inhibited after exposure to Cry1F toxin but increased with prolonged treatment. This study demonstrates that non-lethal Cry1F exposure can affect the growth, immune response, and intestinal microbiota of silkworm.


Subject(s)
Bombyx , Gastrointestinal Microbiome , Lepidoptera , Morus , Animals , Bombyx/genetics , Antioxidants , Larva , Membrane Proteins , Immunity
5.
Front Immunol ; 14: 1185985, 2023.
Article in English | MEDLINE | ID: mdl-37334368

ABSTRACT

Background: Indoleamine-2,3-dioxygenase 1 (IDO1) is responsible for tumor immune escape by regulating T cell-associated immune responses and promoting the activation of immunosuppressive. Given the vital role of IDO1 in immune response, further investigation on the regulation of IDO1 in tumors is needed. Methods: Herein, we used ELISA kit to detect the interferon-gamma (IFN-γ), Tryptophan (Trp), and kynurenic acid (Kyn) levels; western blot, Flow cytometry, and immunofluorescence assays detected the expression of the proteins; Molecular docking assay, SPR assay and Cellular Thermal Shift Assay (CETSA) were used to detect the interaction between IDO1 and Abrine; nano live label-free system was used to detect the phagocytosis activity; tumor xenografts animal experiments were used to explore the anti-tumor effect of Abrine; flow cytometry detected the immune cells changes. Results: The important immune and inflammatory response cytokine interferon-gamma (IFN-γ) up-regulated the IDO1 expression in cancer cells through the methylation of 6-methyladenosine (m6A) m6A modification of RNA, metabolism of Trp into Kyn, and JAK1/STAT1 signaling pathway, which could be inhibited by IDO1 inhibitor Abrine. CD47 is IFN-γ-stimulated genes (ISGs) and prevents the phagocytosis of macrophages, leading to the cancer immune escape, and this effect could be inhibited by Abrine both in vivo and in vitro. The PD-1/PD-L1 axis is an important immune checkpoint in regulating immune response, overexpression of PD-1 or PD-L1 promotes immune suppression, while in this study Abrine could inhibit the expression of PD-L1 in cancer cells or tumor tissue. The combination treatment of Abrine and anti-PD-1 antibody has a synergistic effect on suppressing the tumor growth through up-regulating CD4+ or CD8+ T cells, down-regulating the Foxp3+ Treg cells, and inhibiting the expression of IDO1, CD47, and PD-L1. Conclusion: Overall, this study reveals that Abrine as an IDO1 inhibitor has an inhibition effect on immune escape and has a synergistic effect with the anti-PD-1 antibody on the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , CD47 Antigen/metabolism , CD8-Positive T-Lymphocytes , Immunotherapy , Indole Alkaloids/metabolism , Interferon-gamma/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Molecular Docking Simulation , Tryptophan/metabolism
6.
Fungal Genet Biol ; 167: 103796, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37146899

ABSTRACT

Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.


Subject(s)
Ganoderma , Thermotolerance , Thermotolerance/genetics , Proteomics , Heat-Shock Response/genetics , Ganoderma/genetics
7.
Phytomedicine ; 116: 154884, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37209605

ABSTRACT

BACKGROUND: Lung cancer is the primary cause of cancer-related mortality worldwide owing to its strong metastatic ability. EGFR-TKI (Gefitinib) has demonstrated efficacy in metastatic lung cancer therapy, but most patients ultimately develop resistance to Gefitinib, leading to a poor prognosis. Pedunculoside (PE), a triterpene saponin extracted from Ilex rotunda Thunb., has shown anti-inflammatory, lipid-lowering and anti-tumor effects. Nevertheless, the therapeutic effect and potential mechanisms of PE on NSCLC treatment are unclear. PURPOSE: To investigate the inhibitory effect and prospective mechanisms of PE on NSCLC metastases and Gefitinib-resistant NSCLC. METHODS: In vitro, A549/GR cells were established by Gefitinib persistent induction of A549 cells with a low dose and shock with a high dose. The cell migratory ability was measured using wound healing and Transwell assays. Additionally, EMT-related Markers or ROS production were assessed by RT-qPCR, immunofluorescence, Western blotting, and flow cytometry assays in A549/GR and TGF-ß1-induced A549 cells. In vivo, B16-F10 cells were intravenously injected into mice, and the effect of PE on tumor metastases were determined using hematoxylin-eosin staining, Caliper IVIS Lumina, DCFH2-DA staining, and western blotting assays. RESULTS: PE reversed TGF-ß1-induced EMT by downregulating EMT-related protein expression through MAPK and Nrf2 pathways, decreasing ROS production, and inhibiting cell migration and invasion ability. Moreover, PE treatment enabled A549/GR cells to retrieve the sensitivity to Gefitinib and mitigate the biological characteristics of EMT. PE also significantly inhibited lung metastasis in mice by reversing EMT proteins expression, decreasing ROS production, and inhibiting MAPK and Nrf2 pathways. CONCLUSIONS: Collectively, this research presents a novel finding that PE can reverse NSCLC metastasis and improve Gefitinib sensitivity in Gefitinib-resistant NSCLC through the MAPK and Nrf2 pathways, subsequently suppressing lung metastasis in B16-F10 lung metastatic mice model. Our findings indicate that PE is a potential agent for inhibiting metastasis and improving Gefitinib resistance in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Triterpenes , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/pharmacology , Lung Neoplasms/pathology , Transforming Growth Factor beta1/pharmacology , NF-E2-Related Factor 2 , Epithelial-Mesenchymal Transition , Reactive Oxygen Species , Cell Line, Tumor , Triterpenes/pharmacology , Drug Resistance, Neoplasm
8.
PLoS One ; 18(4): e0284744, 2023.
Article in English | MEDLINE | ID: mdl-37083947

ABSTRACT

RAS, the most frequently mutated oncogene that drives tumorigenesis by promoting cell proliferation, survival, and motility, has been perceived as undruggable for the past three decades. However, intense research in the past has mainly focused on KRAS mutations, and targeted therapy for NRAS mutations remains an unmet medical need. NRAS mutation is frequently observed in several cancer types, including melanoma (15-20%), leukemia (10%), and occasionally other cancer types. Here, we report using miRNA-708, which targets the distinct 3' untranslated region (3'UTR) of NRAS, to develop miRNA-based precision medicine to treat NRAS mutation-driven cancers. We first confirmed that NRAS is a direct target of miRNA-708. Overexpression of miRNA-708 successfully reduced NRAS protein levels in melanoma, leukemia, and lung cancer cell lines with NRAS mutations, resulting in suppressed cell proliferation, anchorage-independent growth, and promotion of reactive oxygen species-induced apoptosis. Consistent with the functional data, the activities of NRAS-downstream effectors, the PI3K-AKT-mTOR or RAF-MEK-ERK signaling pathway, were impaired in miR-708 overexpressing cells. On the other hand, cell proliferation was not disturbed by miRNA-708 in cell lines carrying wild-type NRAS. Collectively, our data unveil the therapeutic potential of using miRNA-708 in NRAS mutation-driven cancers through direct depletion of constitutively active NRAS and thus inhibition of its downstream effectors to decelerate cancer progression. Harnessing the beneficial effects of miR-708 may therefore offer a potential avenue for small RNA-mediated precision medicine in cancer treatment.


Subject(s)
Leukemia , Melanoma , MicroRNAs , Humans , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Melanoma/metabolism , MicroRNAs/genetics , Mutation , Cell Line, Tumor , Proto-Oncogene Proteins B-raf/genetics , Membrane Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
10.
Signal Transduct Target Ther ; 7(1): 137, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468896

ABSTRACT

Whether and how innate antiviral response is regulated by humoral metabolism remains enigmatic. We show that viral infection induces progesterone via the hypothalamic-pituitary-adrenal axis in mice. Progesterone induces downstream antiviral genes and promotes innate antiviral response in cells and mice, whereas knockout of the progesterone receptor PGR has opposite effects. Mechanistically, stimulation of PGR by progesterone activates the tyrosine kinase SRC, which phosphorylates the transcriptional factor IRF3 at Y107, leading to its activation and induction of antiviral genes. SARS-CoV-2-infected patients have increased progesterone levels, and which are co-related with decreased severity of COVID-19. Our findings reveal how progesterone modulates host innate antiviral response, and point to progesterone as a potential immunomodulatory reagent for infectious and inflammatory diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/genetics , Humans , Hypothalamo-Hypophyseal System , Immunity, Innate/genetics , Mice , Pituitary-Adrenal System , Progesterone/pharmacology
11.
Comput Intell Neurosci ; 2022: 5052711, 2022.
Article in English | MEDLINE | ID: mdl-35449750

ABSTRACT

In order to realize accurate marketing by analyzing customer individual demand, a new quantitative Kano model method is put forward, and it is helpful to provide customized products for heterogeneous customer classification groups. By improving the traditional Kano model, the customer satisfaction and the importance degree of products are defined, and the quantitative Kano demand model is established. Customers are classified as the price preference group, the brand preference group, and the service priority group, and decision-making of product attribute quality improvement for customer classification is realized. Lastly, electric vehicles (EVs) are selected as a study case, and their various demands for different classifications of customers are discussed by questionnaire survey and calculation of satisfaction and the importance degree. Furthermore, different customer group demands are classified as attractive demands, expected demands, nondifferential demands, or essential demands, and the important product attribute acquisition process for various customers is discussed to improve enterprise market competitiveness.


Subject(s)
Consumer Behavior , Marketing , Nigeria , Research Design , Surveys and Questionnaires
12.
Chin Med ; 17(1): 24, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35183200

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer mortality worldwide, and most of the patients after treatment with EGF-TKIs develop drug resistance, which is closely correlated with EMT. Cucurbitacin B (CuB) is a natural product of the Chinese herb Cucurbitaceae plant, which has a favorable role in anti-inflammation and anti-cancer activities. However, the effect of CuB on EMT is still far from fully explored. In this study, the inhibition effect of CuB on EMT was investigated. METHODS: In this study, TGF-ß1 was used to induce EMT in A549 cells. MTS assay was used to detect the cell viability of CuB co-treated with TGF-ß1. Wound healing assay and transwell assay were used to determine the migration and invasion capacity of cells. Flow cytometry and fluorescence microscope were used to detect the ROS level in cells. Western blotting assay and immunofluorescence assay were used to detect the proteins expression. Gefitinib was used to establish EGF-TKI resistant NSCLC cells. B16-F10 intravenous injection mice model was used to evaluate the effect of CuB on lung cancer metastasis in vivo. Caliper IVIS Lumina and HE staining were used to detect the lung cancer metastasis of mice. RESULTS: In this study, the results indicated that CuB inhibited TGF-ß1-induced EMT in A549 cells through reversing the cell morphology changes of EMT, increasing the protein expression of E-cadherin, decreasing the proteins expression of N-cadherin and Vimentin, suppressing the migration and invasion ability. CuB also decreased the ROS production and p-PI3K, p-Akt and p-mTOR expression in TGF-ß1-induced EMT in A549 cells. Furthermore, Gefitinib resistant A549 cells (A549-GR) were well established, which has the EMT characteristics, and CuB could inhibit the EMT in A549-GR cells through ROS and PI3K/Akt/mTOR pathways. In vivo study showed that CuB inhibited the lung cancer metastasis effectively through intratracheal administration. CONCLUSION: CuB inhibits EMT in TGF-ß1-induced A549 cells and Gefitinib resistant A549 cells through decreasing ROS production and PI3K/Akt/mTOR signaling pathway. In vivo study validated that CuB inhibits lung cancer metastasis in mice. The study may be supporting CuB as a promising therapeutic agent for NSCLC and Gefitinib resistant NSCLC.

13.
G3 (Bethesda) ; 12(3)2022 03 04.
Article in English | MEDLINE | ID: mdl-35079793

ABSTRACT

Over the past decades, Ganoderma lingzhi spores have received considerable attention as a great potential pharmaceutical resource. However, the genetic regulation of sporulation is not well understood. In this study, a comparative transcriptome analysis of the low-sporing HZ203 and high-sporing YW-1 was performed to characterize the mechanism underlying sporulation. A total of 917 differentially expressed genes were identified in HZ203 and 1,450 differentially expressed genes in YW-1. Differentially expressed genes involved in sporulation were identified, which included HOP1, Mek1, MSH4, MSH5, and Spo5 in meiosis. Positive regulatory pathways of sporulation were proposed as 2 transcriptional factors had high connectivity with MSH4 and Spo5. Furthermore, we found that the pathways associated with energy production were enriched in the high-sporing genotype, such as the glyoxylate and dicarboxylate metabolism, starch and sucrose metabolism. Finally, we performed a weighted gene coexpression network analysis and found that the hub genes of the module which exhibit strong positive relationship with the high-sporing phase purportedly participate in signal transduction, carbohydrate transport and metabolism. The dissection of differentially expressed genes during sporulation extends our knowledge about the genetic and molecular networks mediating spore morphogenesis and sheds light on the importance of energy source during sporulation.


Subject(s)
Gene Expression Profiling , Transcriptome , Ganoderma , Metabolic Networks and Pathways/genetics , Spores, Fungal/genetics
14.
Gene ; 808: 145996, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34634440

ABSTRACT

Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.


Subject(s)
Basidiomycota/genetics , Basidiomycota/metabolism , Agaricales/genetics , China , Genome, Fungal/genetics , Genomics/methods , Molecular Sequence Annotation/methods , Mycorrhizae/genetics , Mycorrhizae/metabolism , Phylogeny , Whole Genome Sequencing/methods
15.
G3 (Bethesda) ; 11(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34586388

ABSTRACT

Ganoderma leucocontextum, a newly discovered species of Ganodermataceae in China, has diverse pharmacological activities. Ganoderma leucocontextum was widely cultivated in southwest China, but the systematic genetic study has been impeded by the lack of a reference genome. Herein, we present the first whole-genome assembly of G. leucocontextum based on the Illumina and Nanopore platform from high-quality DNA extracted from a monokaryon strain (DH-8). The generated genome was 50.05 Mb in size with an N50 scaffold size of 3.06 Mb, 78,206 coding sequences, and 13,390 putative genes. Genome completeness was assessed using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool, which identified 96.55% of the 280 Fungi BUSCO genes. Furthermore, differences in functional genes of secondary metabolites (terpenoids) were analyzed between G. leucocontextum and Ganoderma lucidum. Ganoderma leucocontextum has more genes related to terpenoids synthesis compared to G. lucidum, which may be one of the reasons why they exhibit different biological activities. This is the first genome assembly and annotation for G. leucocontextum, which would enrich the toolbox for biological and genetic studies in G. leucocontextum.


Subject(s)
Ganoderma , China , Ganoderma/genetics , Terpenes , Tibet
16.
AMB Express ; 11(1): 119, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34417676

ABSTRACT

In this study, we used genotyping by sequencing (GBS) to examine the genetic diversity of 22 strains of Lingzhi and the quality differences in 15 fruit bodies of Lingzhi from different Chinese regions. The phylogenetic trees of 22 strains were constructed based on ITS (Internal transcribed spacer) and SNP (single nucleotide polymorphism). Moisture, ash, water-soluble extracts, alcohol-soluble extracts, polysaccharides, and triterpenoids from 15 fruit bodies of Lingzhi were detected and analyzed based on Chinese Pharmacopoeia and the US Pharmacopoeia references. Moreover, the monosaccharide composition of polysaccharides was studied using PMP-HPLC, and the effect of polysaccharides on the proliferation rate of splenocytes was investigated in vitro. The identification results of these strains by the phylogenetic trees which were constructed based on ITS sequences and SNPs showed that most of the strains applied in the main producing areas of Lingzhi in China were accurate except for a few inaccurate strains. The moisture, ash, water and alcohol soluble extractive, polysaccharide and triterpenoid content of all samples were meet the requirements of the Chinese Pharmacopoeia, while the polysaccharide and triterpenoid content of less than half of the samples meet the requirements of the U.S. Pharmacopoeia. The polysaccharide extracted from these samples have different effects on the proliferation rate of spleen cells. To sum up, this is the first study that reported on the differences in Lingzhi strains from the main producing areas in China. The quality of some fruit bodies did not meet the pharmacopeia requirements, and wrong strains were used in some production areas; thus, strains should be given special attention before legal processing.

17.
Genes (Basel) ; 12(4)2021 03 29.
Article in English | MEDLINE | ID: mdl-33805512

ABSTRACT

Ganoderma lucidum spores (GLS), the mature germ cells ejected from the abaxial side of the pileus, have diverse pharmacological effects. However, the genetic regulation of sporulation in this fungus remains unknown. Here, samples corresponding to the abaxial side of the pileus were collected from strain YW-1 at three sequential developmental stages and were then subjected to a transcriptome assay. We identified 1598 differentially expressed genes (DEGs) and found that the genes related to carbohydrate metabolism were strongly expressed during spore morphogenesis. In particular, genes involved in trehalose and malate synthesis were upregulated, implying the accumulation of specific carbohydrates in mature G. lucidum spores. Furthermore, the expression of genes involved in triterpenoid and ergosterol biosynthesis was high in the young fruiting body but gradually decreased with sporulation. Finally, spore development-related regulatory pathways were explored by analyzing the DNA binding motifs of 24 transcription factors that are considered to participate in the control of sporulation. Our results provide a dataset of dynamic gene expression during sporulation in G. lucidum. They also shed light on genes potentially involved in transcriptional regulation of the meiotic process, metabolism pathways in energy provision, and ganoderic acids and ergosterol biosynthesis.


Subject(s)
Carbohydrates/physiology , Fungal Proteins/metabolism , Meiosis , Reishi/physiology , Secondary Metabolism , Spores, Fungal/physiology , Transcriptome , Fungal Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal
18.
Environ Sci Pollut Res Int ; 28(30): 41120-41126, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33774781

ABSTRACT

The adverse effects of parabens raise concerns about their extensive use as preservatives in consumer products, especially in cosmetics. Until now, their distribution and excretion in humans have attracted little attention. Here, we quantified various agents including, for the first time, methyl-; ethyl-; n-propyl-; n-butyl-, and i-butylparaben (MeP, EtP, PrP, n-BuP, i-BuP); methyl- and ethyl-protocatechuate (OH-MeP and OH-EtP); hydroxybenzoic acid (4-HB); and 3,4-dihydroxybenzoic acid (3,4-DHB) in urine, serum, and seminal plasma samples from 50 healthy Chinese men in Beijing, China. Urine paraben concentrations were 1-2 orders of magnitudes higher than those in serum and seminal plasma. MeP and PrP were predominant and correlated with each other in the urine, serum, and seminal plasma. In urine, we observed a significant correlation between MeP and OH-MeP; EtP and OH-EtP; and 4-HB and 3,4-DHB concentrations. All these results provide new information on parabens as biomarkers for the assessment of exposure.


Subject(s)
Parabens , Semen , Adult , Beijing , China , Correlation of Data , Environmental Exposure/analysis , Humans , Male , Parabens/analysis , Semen/chemistry
19.
Angew Chem Int Ed Engl ; 60(15): 8401-8405, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33496012

ABSTRACT

The interest in indole dearomatization, which serves as a useful tool in the total synthesis of related alkaloid natural products, has recently been renewed with the intention of developing new methods efficient in both yield and stereoselective control. Here, we report an enzymatic approach for the oxidative dearomatization of indoles in the asymmetric synthesis of a variety of furoindolines with a vicinal quaternary carbon stereogenic center. This approach depends on the activity of a flavin-dependent monooxygenase, TsrE, which is involved in the biosynthesis of bicyclic thiopeptide antibiotic thiostrepton. TsrE catalyzes 2,3-epoxidation and subsequent epoxide opening in a highly enantioselective manner during the conversion of 2-methyl-indole-3-acetic acid or 2-methyl-tryptophol to furoindoline, with up to >99 % conversion and >99 % ee under mild reaction conditions. Complementing current chemical methods for oxidative indole dearomatization, the TsrE activity-based approach enriches the toolbox in the asymmetric synthesis of products possessing a furoindoline skeleton.


Subject(s)
Flavins/metabolism , Indoles/metabolism , Mixed Function Oxygenases/metabolism , Thiostrepton/biosynthesis , Flavins/chemistry , Indoles/chemistry , Molecular Structure , Oxidation-Reduction , Thiostrepton/chemistry
20.
RSC Adv ; 11(60): 37942-37951, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498098

ABSTRACT

Antibiotics produced by soil microorganisms have been widespread and have cured the most prevalent diseases since 1940s. However, recent bacterial resistance to existing antibacterial drugs is causing a public health crisis. The structure-activity relationship of antibiotics needs to be established to search for existing antibiotics-based next-generation drug candidates that can conquer the challenge of bacterial resistance preparedness, which relies on the development of highly efficient total synthesis strategies. The solid-phase strategy has become important to circumvent tedious intermediate isolation and purification procedures with simple filtrations. This review will give a brief overview of recent applications of solid-phase strategy in the total synthesis of antibiotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...