Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 275, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177131

ABSTRACT

Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.


Subject(s)
Carrier Proteins , Proteolysis Targeting Chimera , Ubiquitin-Protein Ligases , Carrier Proteins/metabolism , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
2.
Sci Rep ; 10(1): 20044, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208877

ABSTRACT

MYC oncoprotein is a multifunctional transcription factor that regulates the expression of a large number of genes involved in cellular growth, proliferation and metabolism. Altered MYC protein level lead to cellular transformation and tumorigenesis. MYC is deregulated in > 50% of human cancers, rendering it an attractive drug target. However, direct inhibition of this class of proteins using conventional small molecules is challenging due to their intrinsically disordered state. To discover novel posttranslational regulators of MYC protein stability and turnover, we established a genetic screen in mammalian cells by combining a fluorescent protein-based MYC abundance sensor, CRISPR/Cas9-based gene knockouts and next-generation sequencing. Our screen identifies UBR5, an E3 ligase of the HECT-type family, as a novel regulator of MYC degradation. Even in the presence of the well-described and functional MYC ligase, FBXW7, UBR5 depletion leads to accumulation of MYC in cells. We demonstrate interaction of UBR5 with MYC and reduced K48-linked ubiquitination of MYC upon loss of UBR5 in cells. Interestingly, in cancer cell lines with amplified MYC expression, depletion of UBR5 resulted in reduced cell survival, as a consequence of MYC stabilization. Finally, we show that MYC and UBR5 are co-amplified in more than 40% of cancer cells and that MYC copy number amplification correlates with enhanced transcriptional output of UBR5. This suggests that UBR5 acts as a buffer in MYC amplified settings and protects these cells from apoptosis.


Subject(s)
CRISPR-Cas Systems , Neoplasms/pathology , Proteolysis , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Apoptosis , Humans , Neoplasms/genetics , Neoplasms/metabolism , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics
3.
Nat Chem Biol ; 16(11): 1189-1198, 2020 11.
Article in English | MEDLINE | ID: mdl-32572277

ABSTRACT

Molecular glues are an intriguing therapeutic modality that harness small molecules to induce interactions between proteins that typically do not interact. However, such molecules are rare and have been discovered fortuitously, thus limiting their potential as a general strategy for therapeutic intervention. We postulated that natural products bearing one or more electrophilic sites may be an unexplored source of new molecular glues, potentially acting through multicovalent attachment. Using chemoproteomic platforms, we show that members of the manumycin family of polyketides, which bear multiple potentially reactive sites, target C374 of the putative E3 ligase UBR7 in breast cancer cells, and engage in molecular glue interactions with the neosubstrate tumor-suppressor TP53, leading to p53 transcriptional activation and cell death. Our results reveal an anticancer mechanism of this natural product family, and highlight the potential for combining chemoproteomics and multicovalent natural products for the discovery of new molecular glues.


Subject(s)
Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Polyenes/chemistry , Polyketides/chemistry , Polyunsaturated Alkamides/chemistry , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Drug Discovery , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Molecular Conformation , Molecular Structure , Polyenes/pharmacology , Polyunsaturated Alkamides/pharmacology , Static Electricity , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics
4.
J Clin Invest ; 127(12): 4554-4568, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29130934

ABSTRACT

Transcriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene. UBB is repressed in approximately 30% of high-grade serous ovarian cancer (HGSOC) patients and is a recurrent lesion in uterine carcinosarcoma and endometrial carcinoma. We identified ovarian tumor cell lines that retain UBB in a repressed state, used these cell lines to establish orthotopic ovarian tumors, and found that inducible expression of a UBC-targeting shRNA led to tumor regression, and substantial long-term survival benefit. Thus, we describe a recurrent cancer-specific lesion at the level of ubiquitin production. Moreover, these observations reveal the prognostic value of UBB repression and establish UBC as a promising therapeutic target for ovarian cancer patients with recurrent UBB silencing.


Subject(s)
Gene Silencing , Neoplasm Proteins/biosynthesis , Ovarian Neoplasms/metabolism , Ubiquitin C/biosynthesis , Ubiquitin/biosynthesis , Cell Line, Tumor , Female , Humans , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Ubiquitin/genetics , Ubiquitin C/genetics
5.
Proc Natl Acad Sci U S A ; 100(14): 8484-9, 2003 Jul 08.
Article in English | MEDLINE | ID: mdl-12815109

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous environmental bacterium capable of causing a variety of life-threatening human infections. The genetic basis for preferential infection of certain immunocompromised patients or individuals with cystic fibrosis by P. aeruginosa is not understood. To establish whether variation in the genomic repertoire of P. aeruginosa strains can be associated with a particular type of infection, we used a whole-genome DNA microarray to determine the genome content of 18 strains isolated from the most common human infections and environmental sources. A remarkable conservation of genes including those encoding nearly all known virulence factors was observed. Phylogenetic analysis of strain-specific genes revealed no correlation between genome content and infection type. Clusters of strain-specific genes in the P. aeruginosa genome, termed variable segments, appear to be preferential sites for the integration of novel genetic material. A specialized cloning vector was developed for capture and analysis of these genomic segments. With this capture system a site associated with the strain-specific ExoU cytotoxin-encoding gene was interrogated and an 80-kb genomic island carrying exoU was identified. These studies demonstrate that P. aeruginosa strains possess a highly conserved genome that encodes genes important for survival in numerous environments and allows it to cause a variety of human infections. The acquisition of novel genetic material, such as the exoU genomic island, through horizontal gene transfer may enhance colonization and survival in different host environments.


Subject(s)
Genome, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Virulence/genetics , Water Microbiology , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Fresh Water , Gene Expression Profiling , Gene Transfer, Horizontal , Genetic Vectors/genetics , Humans , Oligonucleotide Array Sequence Analysis , Phylogeny , Pseudomonas aeruginosa/pathogenicity , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Transformation, Genetic , Washington
SELECTION OF CITATIONS
SEARCH DETAIL