Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 23(1): 51, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34917180

ABSTRACT

Hepatocellular carcinoma (HCC) has a high mortality rate owing to its complexity. Identification of abnormally expressed genes in HCC tissues compared to those in normal liver tissues is a viable strategy for investigating the mechanisms of HCC tumorigenesis and progression as a means of developing novel treatments. A significant advantage of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) is that the data therein were collected from different independent researchers and may be integrated, allowing for a more robust data analysis. Accordingly, in the present study, the gene expression profiles for HCC and control samples were downloaded from the GEO and TCGA. Functional enrichment analysis was performed using a Metascape dataset, and a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/proteins (STRING) online database. The prognostic value of mRNA for HCC was assessed using the Kaplan-Meier Plotter, a public online tool. A gene mRNA heatmap and DNA amplification numbers were obtained from cBioPortal. A total of 2,553 upregulated genes were identified. Functional enrichment analysis revealed that these differentially expressed genes (DEGs) were mainly accumulated in metabolism of RNA and the cell cycle. Considering the complexity and heterogeneity of the molecular alterations in HCC, multiple genes for the prognostication of patients with HCC are more reliable than a single gene. Thus, the PPI network and univariate Cox regression analysis were applied to screen candidate genes (small nuclear ribonucleoprotein polypeptide B and B1, nucleoporin 37, Rac GTPase activating protein 1, kinesin family member 20A, minichromosome maintenance 10 replication initiation factor, ubiquitin conjugating enzyme E2 C and hyaluronan mediated motility receptor) that are associated with the overall survival and progression-free survival of patients with HCC. In conclusion, the present study identified a set of genes that are associated with overall survival and progression-free survival of patients with HCC, providing valuable information for the prognosis of HCC.

2.
Cell Biol Int ; 44(11): 2326-2333, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32770827

ABSTRACT

Targeting cyclin-dependent kinases (CDKs) is a promising method of therapy for cancer. Unfortunately, the efficacy of CDK inhibitors in hepatocellular carcinoma (HCC) is limited, due in part to incomplete understanding of cell cycle progression and a lack of specific biomarkers to adequately identify which patients may be responsive to CDK inhibitors. In the present study, we report that microtubule-associated protein RP/EB family member 1 (MAPRE1), a gene involved in cell cycle and microtubule regulation, is significantly increased in HCC tissue, promotes HCC cell proliferation, enhances in vitro tumorigenesis, and associates with poor prognosis of HCC. We demonstrate that MAPRE1 binds with CDK2, resulting in the hyperphosphorylation of the CDK2 Thr161 residue in HCC cells. Our findings reveal that targeting MAPRE1 might be an effective therapeutic strategy in HCC, and suggest that MAPRE1 expression might provide a promising biomarker to stratify patients with HCC who may benefit from treatment with CDK inhibitors.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cyclin-Dependent Kinase 2/metabolism , Microtubule-Associated Proteins/genetics , Carcinogenesis/genetics , Cell Cycle/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/metabolism , China , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/genetics , Microtubule-Associated Proteins/metabolism , Protein Kinase Inhibitors/pharmacology
3.
Cancer Cell Int ; 16: 63, 2016.
Article in English | MEDLINE | ID: mdl-27486383

ABSTRACT

AIMS: Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Many microRNAs (miRNAs), small non-coding RNAs, are involved in regulating cancer cell proliferation, metastasis, migration, invasion and apoptosis. MAIN METHODS: We investigated the expression of miR-135a in HCC cell lines and clinical tissues. The effect of miR-135a on migration and invasion of HepG2 and MHCC-97L were examined using wound healing and Transwell assay. We determined the expression of miR-135a, forkhead box O1 (FOXO1), matrix metalloproteinase-2 (MMP-2) and Snail using real-time PCR and western blotting. KEY FINDINGS: We found miR-135a was upregulated in HCC cell lines and tissues. miR-135a overexpression promoted HCC cells migration and invasion, whereas miR-135a inhibition suppressed HCC cells migration and invasion. miR-135a overexpression could upregulate the expression of MMP2, Snail and the phosphorylation of AKT, but decreased FOXO3a phosporylation. Tumor suppressor FOXO1 was the direct target for miR-135a. SIGNIFICANCE: Our results suggested that miR-135a might play an important role in promoting migration and invasion in HCC and presents a novel mechanism of miRNA-mediated direct suppression of FOXO1 in HCC cells.

4.
Cancer Sci ; 105(6): 660-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24673742

ABSTRACT

Metastasis is the leading cause of cancer-related death in almost all types of cancers, including colorectal cancer (CRC). Metastasis is a complex, multistep, dynamic biological event, and epithelial-mesenchymal transition (EMT) is a critical process during the cascade. Ajuba family proteins are LIM domain-containing proteins and are reported to be transcription repressors regulating different kinds of physiological processes. However, the expression and pathological roles of Ajuba family proteins in tumors, especial in tumor metastasis, remain poorly studied. Here, we found that JUB, but not the other Ajuba family proteins, was highly upregulated in clinical specimens and CRC cell lines. Ectopic expression of JUB induced EMT and enhanced motility and invasiveness in CRC, and vice versa. Mechanistic study revealed that JUB induces EMT via Snail and JUB is also required for Snail-induced EMT. The expression of JUB shows an inverse correlation with E-cadherin expression in clinical specimens. Taken together, these findings revealed that the LIM protein JUB serves as a tumor-promoting gene in CRC by promoting EMT, a critical process of metastasis. Thus, the LIM protein JUB may provide a novel target for therapy of metastatic CRC.


Subject(s)
Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , LIM Domain Proteins/metabolism , Caco-2 Cells , Cadherins/biosynthesis , Cell Movement , Colorectal Neoplasms/genetics , HCT116 Cells , Humans , LIM Domain Proteins/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , RNA Interference , RNA, Small Interfering , Signal Transduction , Snail Family Transcription Factors , Spheroids, Cellular/pathology , Transcription Factors/metabolism , Tumor Cells, Cultured , Up-Regulation
5.
BMC Cancer ; 13: 412, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-24006921

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide and a leading cause of cancer related death. Although the mortality rate of CRC is decreasing, finding novel targets for its therapy remains urgent. Carboxypeptidase E (CPE), a member of the pro-protein convertases, which are involved in the maturation of protein precursors, has recently been reported as elevated in many types of cancer. However, its role and mechanisms in tumor progression are poorly understood. METHODS: In the present study, we investigated expression of CPE in CRC cell lines and tumor tissues using Western blot and real-time qRT-PCR. Plasmids for overexpression and depletion of CPE were constructed and analyzed by Western blot, MTT and colony formation assays and bromodeoxyuridine incorporation assays. The relative expression of p21, p27, and cyclin D1 were analyzed by Real-time qRT-PCR in the indicated cells. RESULTS: Our study showed that CPE was significantly upregulated in CRC cell lines and tumor tissues. MTT and colony formation assays indicated that overexpression of CPE enhanced cell growth rates. BrdU incorporation and flow-cytometry assays showed that ectopic expression of CPE increased the S-phase fraction cells. Soft agar assay proved enhanced tumorigenicity activity in CPE over-expressing CRC cells. Further studies of the molecular mechanisms of CPE indicated that is promoted cell proliferation and tumorigenicity through downregulation of p21 and p27, and upregulation of cyclin D1. CONCLUSIONS: Taken together, these data suggest that CPE plays an important role in cell cycle regulation and tumorigenicity, and may serve as a potential target for CRC therapeutics.


Subject(s)
Carboxypeptidase H/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Carboxypeptidase H/metabolism , Cell Line, Tumor , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , S Phase/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...