Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1211066, 2023.
Article in English | MEDLINE | ID: mdl-37325033

ABSTRACT

Spinal cord injury (SCI) is a disease of the central nervous system often caused by accidents, and its prognosis is unsatisfactory, with long-term adverse effects on patients' lives. The key to its treatment lies in the improvement of the microenvironment at the injury and the reconstruction of axons, and tissue repair is a promising therapeutic strategy. Hydrogel is a three-dimensional mesh structure with high water content, which has the advantages of biocompatibility, degradability, and adjustability, and can be used to fill pathological defects by injectable flowing hydrophilic material in situ to accurately adapt to the size and shape of the injury. Hydrogels mimic the natural extracellular matrix for cell colonization, guide axon extension, and act as a biological scaffold, which can be used as an excellent carrier to participate in the treatment of SCI. The addition of different materials to make composite hydrogel scaffolds can further enhance their performance in all aspects. In this paper, we introduce several typical composite hydrogels and review the research progress of hydrogel for SCI to provide a reference for the clinical application of hydrogel therapy for SCI.

2.
Cartilage ; 13(3): 19476035221118419, 2022.
Article in English | MEDLINE | ID: mdl-36086807

ABSTRACT

OBJECTIVE: This paper reviews the research of platelet-rich plasma (PRP) in articular cartilage injury repair, to assess the mechanism, utilization, and efficacy of PRP in the treatment of articular cartilage injury, hoping to provide a theoretical basis for the clinical application of PRP in the future. MATERIALS AND METHODS: A comprehensive database search on PRP applications in cartilage repair was performed. Among them, the retrieval time range of PRP in clinical trials of repairing knee cartilage injury was from January 1, 2021 to January 1, 2022. Non-clinical trials and studies unrelated to cartilage injury were excluded. RESULT: PRP can affect inflammation, angiogenesis, cartilage protection, and cellular proliferation and differentiation after articular cartilage injury through different pathways. In all, 13 clinical trials were included in the analysis. CONCLUSION: PRP is an emergent therapeutic approach in tissue engineering. Most studies reported that PRP has a positive effect on cartilage injury, improving the joint function, meanwhile there is a lack of standardized standards. The technology of PRP in the repair and treatment of articular cartilage injury is worthy of further research.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Platelet-Rich Plasma , Cartilage Diseases/therapy , Humans , Knee Joint
3.
Neural Regen Res ; 17(1): 217-227, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34100459

ABSTRACT

Our previous RNA sequencing study showed that the long non-coding RNA ischemia-related factor Vof-16 (lncRNA Vof-16) was upregulated after spinal cord injury, but its precise role in spinal cord injury remains unclear. Bioinformatics predictions have indicated that lncRNA Vof-16 may participate in the pathophysiological processes of inflammation and apoptosis. PC12 cells were transfected with a pHBLV-U6-MCS-CMV-ZsGreen-PGK-PURO vector to express an lncRNA Vof-16 knockdown lentivirus and a pHLV-CMVIE-ZsGree-Puro vector to express an lncRNA Vof-16 overexpression lentivirus. The overexpression of lncRNA Vof-16 inhibited PC12 cell survival, proliferation, migration, and neurite extension, whereas lncRNA Vof-16 knockdown lentiviral vector resulted in the opposite effects in PC12 cells. Western blot assay results showed that the overexpression of lncRNA Vof-16 increased the protein expression levels of interleukin 6, tumor necrosis factor-α, and Caspase-3 and decreased Bcl-2 expression levels in PC12 cells. Furthermore, we established rat models of spinal cord injury using the complete transection at T10. Spinal cord injury model rats were injected with the lncRNA Vof-16 knockdown or overexpression lentiviral vectors immediately after injury. At 7 days after spinal cord injury, rats treated with lncRNA Vof-16 knockdown displayed increased neuronal survival and enhanced axonal extension. At 8 weeks after spinal cord injury, rats treated with the lncRNA Vof-16 knockdown lentiviral vector displayed improved neurological function in the hind limb. Notably, lncRNA Vof-16 knockdown injection increased Bcl-2 expression and decreased tumor necrosis factor-α and Caspase-3 expression in treated animals. Rats treated with the lncRNA Vof-16 overexpression lentiviral vector displayed opposite trends. These findings suggested that lncRNA Vof-16 is associated with the regulation of inflammation and apoptosis. The inhibition of lncRNA Vof-16 may be useful for promoting nerve regeneration and functional recovery after spinal cord injury. The experiments were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.

4.
J Mol Neurosci ; 72(1): 136-148, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34569008

ABSTRACT

Brachial plexus avulsion (BPA) is a devastating traumatic peripheral nerve injury complicated with paralysis of the upper extremity. We previously reported that leucine-rich repeat and immunoglobulin-like domain-containing NOGO receptor-interacting protein 1 (LINGO-1) has a potent role in inhibiting neuron survival and axonal regeneration after the central nervous system (CNS) damage and miR-615 is a potential microRNA (miRNA) negatively regulated LINGO-1. However, the effect of miR-615 in BPA remains to be elucidated. Accumulating evidence indicates that pluronic F-127 (PF-127) hydrogel could serve as a promising vehicle for miRNA encapsulation. Thus, to further explore the potential role of hydrogel-miR-615 in BPA-reimplantation, the present study established the BPA rat model and injected miR-615 agomir encapsulated by PF-127 hydrogel into the reimplantation site using a microsyringe. In this study, results indicated that hydrogel-miR-615 agomir effectively alleviated motoneuron loss by LINGO-1 inhibition, promoted musculocutaneous nerve regeneration and myelination, reduced astrocytes activation, promoted angiogenesis and attenuated peripheral amyotrophy, leading to improved motor functional rehabilitation of the upper extremity. In conclusion, our findings demonstrate that miR-615-loaded PF-127 hydrogel may represent a novel therapeutic strategy for BPA treatment.


Subject(s)
Brachial Plexus , MicroRNAs , Animals , Brachial Plexus/injuries , MicroRNAs/genetics , MicroRNAs/metabolism , Motor Neurons/metabolism , Poloxamer/metabolism , Poloxamer/pharmacology , Poloxamer/therapeutic use , Rats , Recovery of Function
SELECTION OF CITATIONS
SEARCH DETAIL
...