Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACM Trans Graph ; 38(4)2019 Jul.
Article in English | MEDLINE | ID: mdl-31341347

ABSTRACT

Establishing high-quality correspondence maps between geometric shapes has been shown to be the fundamental problem in managing geometric shape collections. Prior work has focused on computing efficient maps between pairs of shapes, and has shown a quantifiable benefit of joint map synchronization, where a collection of shapes are used to improve (denoise) the pairwise maps for consistency and correctness. However, these existing map synchronization techniques place very strong assumptions on the input shapes collection such as all the input shapes fall into the same category and/or the majority of the input pairwise maps are correct. In this paper, we present a multiple map synchronization approach that takes a heterogeneous shape collection as input and simultaneously outputs consistent dense pairwise shape maps. We achieve our goal by using a novel tensor-based representation for map synchronization, which is efficient and robust than all prior matrix-based representations. We demonstrate the usefulness of this approach across a wide range of geometric shape datasets and the applications in shape clustering and shape co-segmentation.

2.
Proc Mach Learn Res ; 80: 324-333, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32743559

ABSTRACT

We introduce a principled approach for simultaneous mapping and clustering (SMAC) for establishing consistent maps across heterogeneous object collections (e.g., 2D images or 3D shapes). Our approach takes as input a heterogeneous object collection and a set of maps computed between some pairs of objects, and outputs a homogeneous object clustering together with a new set of maps possessing optimal intra- and inter-cluster consistency. Our approach is based on the spectral decomposition of a data matrix storing all pairwise maps in its blocks. We additionally provide tight theoretical guarantees for the accuracy of SMAC under established noise models. We also demonstrate the usefulness of our approach on synthetic and real datasets.

3.
Adv Neural Inf Process Syst ; 30: 1459-1468, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29937676

ABSTRACT

In this paper, we introduce a robust algorithm, TranSync, for the 1D translation synchronization problem, in which the aim is to recover the global coordinates of a set of nodes from noisy measurements of relative coordinates along an observation graph. The basic idea of TranSync is to apply truncated least squares, where the solution at each step is used to gradually prune out noisy measurements. We analyze TranSync under both deterministic and randomized noisy models, demonstrating its robustness and stability. Experimental results on synthetic and real datasets show that TranSync is superior to state-of-the-art convex formulations in terms of both efficiency and accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL