Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.662
Filter
1.
JMIR Public Health Surveill ; 10: e56283, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222341

ABSTRACT

BACKGROUND: Despite increasing awareness, silica dust-induced silicosis still contributes to the huge disease burden in China. Worryingly, recent silica dust exposure levels and silicosis risk in Chinese noncoal mines remain unclear. OBJECTIVE: We aimed to determine recent silica dust exposure levels and assess the risk of silicosis in Chinese noncoal mines. METHODS: Between May and December 2020, we conducted a retrospective cohort study on 3 noncoal mines and 1 public hospital to establish, using multivariable Cox regression analyses, prediction formulas of the silicosis cumulative hazard ratio (H) and incidence (I) and a cross-sectional study on 155 noncoal mines in 10 Chinese provinces to determine the prevalence of silica dust exposure (PDE), free silica content, and total dust and respirable dust concentrations. The qualitative risk of silicosis was assessed using the International Mining and Metals Commission's risk-rating table and the occupational hazard risk index; the quantitative risk was assessed using prediction formulas. RESULTS: Kaplan-Meier survival analysis revealed significant differences in the silicosis probability between silica dust-exposed male and female miners (log-rank test χ21=7.52, P=.01). A total of 126 noncoal mines, with 29,835 miners and 4623 dust samples, were included; 13,037 (43.7%) miners were exposed to silica dust, of which 12,952 (99.3%) were male. The median PDE, free silica content, total dust concentration, and respirable dust concentration were 61.6%, 27.6%, 1.30 mg/m3, and 0.58 mg/m3, respectively, indicating that miners in nonmetal, nonferrous metal, small, and open-pit mines suffer high-level exposure to silica dust. Comprehensive qualitative risk assessment showed noncoal miners had a medium risk of silicosis, and the risks caused by total silica dust and respirable silica dust exposure were high and medium, respectively. When predicting H and I over the next 10, 20, and 30 years, we assumed that the miner gender was male. Under exposure to current total silica dust concentrations, median I10, I20, and I30 would be 6.8%, 25.1%, and 49.9%, respectively. Under exposure to current respirable silica dust concentrations, median I10, I20, and I30 would be 6.8%, 27.7%, and 57.4%, respectively. These findings showed that miners in nonmetal, nonferrous metal, small, and open-pit mines have a higher I and higher qualitative silicosis risk. CONCLUSIONS: Chinese noncoal miners, especially those in nonmetal, nonferrous metal, small, and open-pit mines, still suffer high-level exposure to silica dust and a medium-level risk of silicosis. Data of both total silica dust and respirable silica dust are vital for occupational health risk assessment in order to devise effective control measures to reduce noncoal mine silica dust levels, improve miners' working environment, and reduce the risk of silicosis.


Subject(s)
Dust , Mining , Occupational Exposure , Silicon Dioxide , Silicosis , Humans , Silicosis/epidemiology , Silicosis/etiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Occupational Exposure/statistics & numerical data , Silicon Dioxide/analysis , Silicon Dioxide/adverse effects , Dust/analysis , Male , China/epidemiology , Female , Risk Assessment/methods , Retrospective Studies , Mining/statistics & numerical data , Adult , Middle Aged , Cross-Sectional Studies , Cohort Studies
2.
Food Res Int ; 194: 114936, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232547

ABSTRACT

The volatile profiles of wheat flour during maturation were examined through headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) combined with electronic nose (E-nose) and electronic tongue (E-tongue) analyses. The wheat flour underwent maturation under three distinct conditions for predetermined durations. While GC/MS coupled with E-tongue exhibited discernment capability among wheat flour samples subjected to varying maturation conditions, E-nose analysis solely relying on principal component analysis failed to achieve discrimination. 83 volatile compounds were identified in wheat flour, with the highest abundance observed in samples matured for 50 d at 25 °C. Notably, trans-2-Nonenal, decanal, and nonanal were the main contributors to the characteristic flavor profile of wheat flour. Integration of HS-SPME-GC/MS with E-tongue indicated superior flavor development and practical viability in wheat flour matured for 50 d at 25 °C. This study furnishes a theoretical groundwork for enhancing the flavor profiles of wheat flour and its derivative products.


Subject(s)
Electronic Nose , Flour , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Taste , Triticum , Volatile Organic Compounds , Flour/analysis , Volatile Organic Compounds/analysis , Triticum/chemistry , Food Handling/methods , Principal Component Analysis , Odorants/analysis
3.
Food Res Int ; 194: 114941, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232551

ABSTRACT

The fate of Alternaria toxin tenuazonic acid (TeA) during the processing chain of wheat flour products was systemically evaluated. TeA was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and the corresponding wheat flour products produced throughout the whole chain. The results indicated that TeA contamination in wheat grains largely determines the level of TeA toxin present in byproducts, semi-finished products, and finished products of the processing of four types of simulated processed wheat flour products (e.g., dry noodles, steamed breads, baked breads, and biscuits). The different food processing techniques had different effects on the fate of TeA. Wheat flour processing can reduce the TeA content in wheat grains by 58.7-83.2 %, indicating that wheat flour processing is a key step in reducing the TeA content in the food chain. Among the four types of wheat flour products, the decreases in TeA content in biscuits (69.8-76.7 %) were greater than those in dry noodles (15.5-22.3 %) and steamed breads (24.9-43.6 %). In addition, the decreasing effect of TeA was especially obvious in the wheat flour product chain with a high level of contamination. The processing factors (PFs) for TeA were as low as 0.20 for the four wheat processing methods and as high as 1.24 for the dry noodle processing method. At the average and 95th percentiles, dietary exposure to TeA in Chinese consumers including infants and young children did not exceed the relevant threshold value of toxicological concern (TTC) of TeA (1.5 µg/kg body weight per day), indicating an acceptable health risk for Chinese consumers via wheat flour products. These findings provide new insight into the fate of TeA in the food chain and mycotoxin control on the safety of wheat flour products and public health.


Subject(s)
Alternaria , Flour , Food Contamination , Food Handling , Tandem Mass Spectrometry , Tenuazonic Acid , Triticum , Tenuazonic Acid/analysis , Flour/analysis , Triticum/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Food Handling/methods , Mycotoxins/analysis , Humans , Chromatography, Liquid , Bread/analysis
4.
Colloids Surf B Biointerfaces ; 244: 114177, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39217729

ABSTRACT

In the realm of intracellular drug delivery, overcoming the barrier of endosomal entrapment stands as a critical factor influencing the effectiveness of nanodrug delivery systems. This study focuses on the synthesis of an acid-sensitive fatty acid derivative called imidazole-stearic acid (IM-SA). Leveraging the proton sponge effect attributed to imidazole groups, IM-SA was anticipated to play a pivotal role in facilitating endosomal escape. Integrated into the lipid core of solid lipid nanoparticles (SLNs), IM-SA was paired with hyaluronic acid (HA) coating on the surface of SLNs loading with curcumin (CUR). The presence of IM-SA and HA endowed HA-IM-SLNs@CUR with dual functionalities, enabling the promotion of endosomal escape, and specifical targeting of liver cancer. HA-IM-SLNs@CUR exhibited a particle size of ∼228 nm, with impressive encapsulation efficiencies (EE) of 87.5 % ± 2.3 % for CUR. Drugs exhibit significant pH sensitive release behavior. Cellular experiments showed that HA-IM-SLN@CUR exhibits enhanced drug delivery capability. The incorporation of IM-SA significantly improved the endosomal escape of HA-IM-SLN@CUR, facilitating accelerated intracellular drug release and increasing intracellular drug concentration, exhibiting excellent growth inhibitory effects on HepG2 cells. Animal experiments revealed a 3.4-fold increase in CUR uptake at the tumor site with HA-IM-SLNs@CUR over the free CUR, demonstrating remarkable tumor homing potential with the tumor growth inhibition rate of 97.2 %. These findings indicated the significant promise of HA-IM-SLNs@CUR in the realm of cancer drug delivery.

5.
J Transl Med ; 22(1): 720, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103842

ABSTRACT

BACKGROUND: Fatigue is one of the most common neurological symptoms reported post coronavirus disease 2019 (COVID-19) infection. In order to establish effective early intervention strategies, more emphasis should be placed on the correlation between fatigue and cortical neurophysiological changes, especially in healthcare workers, who are at a heightened risk of COVID-19 infection. METHODS: A prospective cohort study was conducted involving 29 COVID-19 medical workers and 24 healthy controls. The assessment included fatigue, sleep and health quality, psychological status, and physical capacity. Functional near-infrared spectroscopy (fNIRS) was employed to detect activation of brain regions. Bilateral primary motor cortex (M1) excitabilities were measured using single- and paired-pulse transcranial magnetic stimulation. Outcomes were assessed at 1, 3, and 6 months into the disease course. RESULTS: At 1-month post-COVID-19 infection, 37.9% of patients experienced severe fatigue symptoms, dropping to 10.3% at 3 months. Interestingly, the remarkable decreased activation/excitability of bilateral prefrontal lobe (PFC) and M1 were closely linked to fatigue symptoms after COVID-19. Notably, greater increase in M1 region excitability correlated with more significant fatigue improvement. Re-infected patients exhibited lower levels of brain activation and excitability compared to single-infection patients. CONCLUSIONS: Both single infection and reinfection of COVID-19 lead to decreased activation and excitability of the PFC and M1. The degree of excitability improvement in the M1 region correlates with a greater recovery in fatigue. Based on these findings, targeted interventions to enhance and regulate the excitability of M1 may represent a novel strategy for COVID-19 early rehabilitation. TRIAL REGISTRATION: The Ethics Review Committee of Xijing Hospital, No. KY20232051-F-1; www.chictr.org.cn , ChiCTR2300068444.


Subject(s)
COVID-19 , Fatigue , Health Personnel , Motor Cortex , Prefrontal Cortex , Transcranial Magnetic Stimulation , Humans , COVID-19/physiopathology , Fatigue/physiopathology , Male , Female , Longitudinal Studies , Adult , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Motor Cortex/physiopathology , Middle Aged , SARS-CoV-2/isolation & purification , Prospective Studies , Spectroscopy, Near-Infrared , Cohort Studies
6.
Front Plant Sci ; 15: 1427471, 2024.
Article in English | MEDLINE | ID: mdl-39109059

ABSTRACT

In modern agriculture, Controlled environment agriculture (CEA) stands out as a contemporary production mode that leverages precise control over environmental conditions such as nutrient, temperature, light, and other factors to achieve efficient and high-quality agricultural production. Numerous studies have demonstrated the efficacy of manipulating these environmental factors in the short period before harvest to enhance crop yield and quality in CEA. This comprehensive review aims to provide insight into various pre-harvest practices employed in CEA, including nutrient deprivation, nutrient supply, manipulation of the light environment, and the application of exogenous hormones, with the objective of improving yield and quality in horticultural crops. Additionally, we propose an intelligent pre-harvest management system to cultivate high-quality horticultural crops. This system integrates sensor technology, data analysis, and intelligent control, enabling the customization of specific pre-harvest strategies based on producers' requirements. The envisioned pre-harvest intelligent system holds the potential to enhance crop quality, increase yield, reduce resource wastage, and offer innovative ideas and technical support for the sustainable development of CEA.

7.
Adv Healthc Mater ; : e2401373, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118566

ABSTRACT

Chemotherapy is the cornerstone of triple-negative breast cancer. The poor effectiveness and severe neuropathic pain caused by it have a significant impact on the immune system. Studies confirmed that immune cells in the tumor microenvironment (TME), have critical roles in tumor immune regulation and prognosis. In this study, it is revealed that the painless administration of Esketamine, combined with Cisplatin (DDP), can exert an anti-tumor effect, which is further boosted by the hydrogel delivery system. It is also discovered that Esketamine combined with DDP co-loaded in Poloxamer Hydrogel (PDEH) induces local immunity by increasing mature Dendritic Cells (mDCs) and activated T cells in PDEH group while the regulatory T cells (Tregs) known as CD4+CD25+FoxP3+decreased significantly. Finally, , CD8+ and CD4+ T cells in the spleen exhibited a significant increase, suggesting a lasting immune impact of PDEH. This study proposes that Esketamine can serve as a painless immune modulator, enhancing an anti-tumor effect while co-loaded in poloxamer hydrogel with DDP. Along with improving immune cells in the microenvironment, it can potentially alleviate anxiety and depression. With its outstanding bio-safety profile, it offers promising new possibilities for painless clinical therapy.

8.
Heliyon ; 10(15): e35139, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170182

ABSTRACT

This study explores the bioactive secondary metabolite profiles of the peels of three major cultivars of bananas (Musa acuminata and Musa balbisiana). These cultivars are primarily grown in Southeast Asia and are widely consumed due to their rich nutritional and fiber content. The research utilizes advanced analytical techniques, specifically HPLC-DAD-q-TOF-MS/MS, in conjunction with both univariate and multivariate statistical analyses, to analyze the ethanolic extracts of the banana peels. This study identifies phenolic acids, flavonoids, and proanthocyanidins as significant contributors to the differentiation of the cultivars. The secondary metabolites rutin, chlorogenic acid, and gentisic acid are pinpointed as the key discriminants. Moreover, the research demonstrates a synergistic contribution of certain phytochemicals to the antioxidant and antibacterial properties of the banana peel extracts. The fingerprint profiling tools introduced in this study offer a reliable method for identifying metabolite biomarkers for the discrimination of banana cultivars.

9.
Nat Commun ; 15(1): 7038, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147846

ABSTRACT

Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.

10.
Water Res ; 265: 122302, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39178591

ABSTRACT

Enriching microorganisms using a 0.22-µm pore size is a general pretreatment procedure in river microbiome research. However, it remains unclear the extent to which this method loses microbiome information. Here, we conducted a comparative metagenomics-based study on microbiomes with sizes over 0.22 µm (large-sized) and between 0.22 µm and 0.1 µm (small-sized) in a subtropical river. Although the absolute concentration of small-sized microbiome was about two orders of magnitude lower than that of large-sized microbiome, sequencing only large-sized microbiome resulted in a significant loss of microbiome diversity. Specifically, the microbial community was different between two sizes, and 347 genera were only detected in small-sized microbiome. Small-sized microbiome had much more diverse viral community than large-sized fraction. The viruses had abundant ecological functions and were hosted by 825 species of 169 families, including pathogen-related families. Small-sized microbiome had distinct antimicrobial resistance risks from large-sized microbiome, showing an enrichment of eight antibiotic resistance gene (ARG) types as well as the detection of 140 unique ARG subtypes and five enriched risk rank I ARGs. Draft genomes of five major resistant pathogens having diverse ecological and pollutant-degrading functions were only assembled in small-sized microbiome. These findings provide novel insights into river ecosystems, and highlight the overlooked small-sized microbiome in the environment.

11.
Virol J ; 21(1): 183, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129001

ABSTRACT

BACKGROUNDS: Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen causing respiratory diseases in children. This study aimed to characterize epidemiological and disease severity shifts of M. pneumoniae: infections in Guangzhou, China during and after the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Throat swab samples were obtained from 5405 hospitalized patients with symptoms of acute respiratory infections to detect M. pneumoniae. Differences in epidemiological and clinical characteristics of M. pneumoniae: infections were investigated during 2020-2022 and after COVID-19 pandemic (2023). RESULTS: M. pneumoniae were detected in 849 (15.6%, 849/5405) patients. The highest annual positive rate was 29.4% (754/2570) in 2023, followed by 5.3% (72/1367) in 2022, 1.2% (12/1015) in 2021, and 2.0% (11/553) in 2020, with significantly increasing annual prevalence from 2020 to 2023. M. pneumoniae incidence peaked between July and December post-COVID-19 pandemic in 2023, with the highest monthly positive rate (56.4%, 165/293). Clinical characteristics and outcomes of patients with M. pneumoniae did not vary between periods during and after COVID-19 pandemic except that patients with M. pneumoniae post-COVID-19 pandemic were more likely to develop fever. Patients with severe M. pneumoniae pneumonia (SMPP) were more likely to develop respiratory complications, myocardial damage, and gastrointestinal dysfunction than those with non-SMPP. Patients with SMPP had lower lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, and higher IL-4, IL-6, IL-10 levels than those with non-SMPP. Bronchoalveolar lavage fluid specimens from infected patients were obtained to identify macrolide resistance mutations. Macrolide-resistant M. pneumoniae (MRMP) proportion in 2023 was 91.1% (215/236). CONCLUSION: Outbreaks of M. pneumoniae: occurred in Guangzhou, China in 2023 upon Non-pharmaceutical interventions easing. Despite the increasing incidence of M. pneumoniae, the disease severity remained similar during and after the COVID-19 pandemic.


Subject(s)
COVID-19 , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , China/epidemiology , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , COVID-19/epidemiology , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Male , Female , Child , Adult , Adolescent , Middle Aged , Child, Preschool , Young Adult , Disease Outbreaks , SARS-CoV-2/genetics , Infant , Aged , Incidence , Prevalence , Pandemics
12.
Front Pharmacol ; 15: 1403943, 2024.
Article in English | MEDLINE | ID: mdl-39130628

ABSTRACT

Background: Alternative and complementary therapies play an imperative role in the clinical management of Type 2 diabetes mellitus (T2DM), and exploring and utilizing natural products from a genetic perspective may yield novel insights into the mechanisms and interventions of the disorder. Methods: To identify the therapeutic target of baicalin for T2DM, we conducted a Mendelian randomization study. Druggable targets of baicalin were obtained by integrating multiple databases, and target-associated cis-expression quantitative trait loci (cis-eQTL) originated from the eQTLGen consortium. Summary statistics for T2DM were derived from two independent genome-wide association studies available through the DIAGRAM Consortium (74,124 cases vs. 824,006 controls) and the FinnGen R9 repository (9,978 cases vs. 12,348 controls). Network construction and enrichment analysis were applied to the therapeutic targets of baicalin. Colocalization analysis was utilized to assess the potential for the therapeutic targets and T2DM to share causative genetic variations. Molecular docking was performed to validate the potency of baicalin. Single-cell RNA sequencing was employed to seek evidence of therapeutic targets' involvement in islet function. Results: Eight baicalin-related targets proved to be significant in the discovery and validation cohorts. Genetic evidence indicated the expression of ANPEP, BECN1, HNF1A, and ST6GAL1 increased the risk of T2DM, and the expression of PGF, RXRA, SREBF1, and USP7 decreased the risk of T2DM. In particular, SREBF1 has significant interaction properties with other therapeutic targets and is supported by strong colocalization. Baicalin had favorable combination activity with eight therapeutic targets. The expression patterns of the therapeutic targets were characterized in cellular clusters of pancreatic tissues that exhibited a pseudo-temporal dependence on islet cell formation and development. Conclusion: This study identified eight potential targets of baicalin for treating T2DM from a genetic perspective, contributing an innovative analytical framework for the development of natural products. We have offered fresh insights into the connections between therapeutic targets and islet cells. Further, fundamental experiments and clinical research are warranted to delve deeper into the molecular mechanisms of T2DM.

13.
Bioresour Technol ; 410: 131297, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153702

ABSTRACT

Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R1 and R2, were constructed and optimized for treating SW from two pig farms, identified as SW1 and SW2. R2 showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R1 and 14.1 % in R2, respectively. Mantel's test revealed that pH, NH4+-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.


Subject(s)
Anti-Bacterial Agents , Sewage , Wastewater , Animals , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Swine , Wastewater/chemistry , Aerobiosis , Drug Resistance, Microbial/genetics , Water Purification/methods , Bioreactors , Genes, Bacterial , Waste Disposal, Fluid/methods , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Water Pollutants, Chemical
14.
Food Res Int ; 192: 114784, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147488

ABSTRACT

The distribution of deoxynivalenol (DON) and its derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON) throughout the wheat processing chain were systemically evaluated by one-to-one corresponding studies of the whole processing chain. DON and its derivatives were determined by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and corresponding wheat bran, wheat flour, and semi-finished and finished wheat flour-based products. This investigation showed that wheat grain processing to wheat flour significantly decreased the levels of DON by approximately 52.7%-68.2%. Wheat flour processing of wheat flour-based products decreased the DON concentration by approximately 7.0%-70.6%. Among the processing methods, biscuit making showed the largest reduction (70.6%). The co-occurrence frequency of DON with low levels of 3-Ac-DON and 15-Ac-DON was significantly greater in wheat grains and wheat bran than in wheat flour. For wheat flour-based products, only the distribution pattern of 3-Ac-DON was observable in processed wheat flour products prepared using grains heavily contaminated with DON. In China, to the best of our knowledge, the processing factors (PFs) of DON in wheat flour and wheat flour-based products were systematically evaluated for the first time. The average PF of DON was 0.35 for wheat flour and the average PFs were 0.37-0.84 for wheat flour-based products, with biscuits having the smallest PF (0.37), indicating DON significantly decreasing in biscuit making. Furthermore, dietary exposure assessment of DON indicated an acceptable overall health risk in Chinese consumers, with the highest exposure being observed in infants and young children. This study provides important references for classified management of DON limits in wheat and its various products in China.


Subject(s)
Flour , Food Contamination , Food Handling , Tandem Mass Spectrometry , Trichothecenes , Triticum , Trichothecenes/analysis , Triticum/chemistry , Flour/analysis , Food Contamination/analysis , Food Handling/methods , Chromatography, Liquid , Humans , China
15.
Environ Pollut ; 361: 124868, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216669

ABSTRACT

Acrylamide is pervasive, and its exposure poses numerous health risks. This study examines both the direct and transgenerational effects of acrylamide toxicity in Caenorhabditis elegans, focusing on physiological and behavioral parameters. Parental exposure to acrylamide compromised several aspects of nematode health, including lifespan, reproductive capacity, body dimensions, and motor and sensory functions. Notably, while exposure to low concentrations of acrylamide did not alter the physiological traits of the offspring-except for their learning and memory-these findings suggest a possible adaptive response to low-level exposure that could be inherited by subsequent generations. Furthermore, continued acrylamide exposure in the offspring intensified both physiological and perceptual toxicity. Detailed analysis revealed dose-dependent alterations in acrylamide's detoxification and metabolic pathways. In particular, it inhibits the gene gst-4, which encodes a crucial enzyme in detoxification, mitigates DNA damage induced by acrylamide, and highlights a potential therapeutic target to reduce its deleterious effects.

16.
Front Pharmacol ; 15: 1360587, 2024.
Article in English | MEDLINE | ID: mdl-39188951

ABSTRACT

Shikonin, a naturally occurring naphthoquinone compound extracted from comfrey plants, has antitumor, anti-inflammatory, and antimicrobial properties. Cell senescence plays a key role in preventing tumor progression. It is unclear whether shikonin has an effect on cell senescence in colon cancer. In the current study, we first determine the IC50 values of shikonin on colon cancer cell lines HT29 and HCT116. Then, we verified the inhibitory effects of shikonin on the proliferation and migration abilities of colon cancer cell lines HT29 and HCT116 using cell counting kit-8, colony formation, and wound healing assays. Next, we identified a series of potential targets using high-throughput mRNA sequencing and identified 210 upregulated and 296 downregulated genes. KEGG profiling revealed eight downregulated genes associated with cell senescence: CCNB3, IL-1α, CXCL8, CDKN2A, MYC, IGFBP3, SQSTM1, and GADD45G. Among them, CXCL8 and CDKN2A were associated with poor prognosis in patients with colon cancer, suggesting that their downregulation by shikonin could improve patient survival. Furthermore, SA-ß-galactosidase staining revealed that the percentage of cellular senescence in colon cancer cells was significantly increased after shikonin treatment. Molecular docking revealed that shikonin suppressed colon cancer progression by blocking CXCL8 activity. Based on these findings, we deem that shikonin might induce senescence and exert antitumor activity in colon cancer cells by downregulating CDKN2A and CXCL8. This provides a new molecular mechanism and potential therapeutic target for shikonin to inhibit colon cancer progression.

17.
Sensors (Basel) ; 24(16)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39204885

ABSTRACT

Sarcopenia is an age-related syndrome characterized by the loss of skeletal muscle mass and function. Community screening, commonly used in early diagnosis, usually lacks features such as real-time monitoring, low cost, and convenience. This study introduces a promising approach to sarcopenia screening by dynamic plantar pressure monitoring. We propose a wearable flexible-printed piezoelectric sensing array incorporating barium titanate thin films. Utilizing a flexible printer, we fabricate the array with enhanced compressive strength and measurement range. Signal conversion circuits convert charge signals of the sensors into voltage signals, which are transmitted to a mobile phone via Bluetooth after processing. Through cyclic loading, we obtain the average voltage sensitivity (4.844 mV/kPa) of the sensing array. During a 6 m walk, the dynamic plantar pressure features of 51 recruited participants are extracted, including peak pressures for both sarcopenic and control participants before and after weight calibration. Statistical analysis discerns feature significance between groups, and five machine learning models are employed to screen for sarcopenia with the collected features. The results show that the features of dynamic plantar pressure have great potential in early screening of sarcopenia, and the Support Vector Machine model after feature selection achieves a high accuracy of 93.65%. By combining wearable sensors with machine learning techniques, this study aims to provide more convenient and effective sarcopenia screening methods for the elderly.


Subject(s)
Pressure , Sarcopenia , Walking , Wearable Electronic Devices , Humans , Sarcopenia/diagnosis , Sarcopenia/physiopathology , Walking/physiology , Male , Aged , Female , Middle Aged , Foot/physiology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Machine Learning
18.
Foods ; 13(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39200465

ABSTRACT

The maturation of wheat flour is a transformative process that elevates its processing and culinary attributes to their peak performance levels. Despite extensive research on starch and gluten protein modifications, the impact of lipid changes has been largely unexplored. This study addresses this gap by examining the maturation of freshly milled wheat flour at 15 °C, 25 °C, and 40 °C over 60 days, focusing on enzymatic activities-lipase, lipoxidase, and catalase-and lipid metabolites, including free fatty acids, conjugated trienes, p-anisidine value, and total oxidation value. The results of this study showed that free fatty acids continued to increase at all temperatures, with the most significant increase of 50% at 15 °C. The p-anisidine value followed a pattern of initial increase followed by a decline, while conjugated trienes were markedly higher at 40 °C, suggesting temperature's significant influence on lipid peroxidation. Notably, total oxidation values became erratic post 30 days, indicating a shift in oxidative dynamics. This study underscores the correlation between lipid metabolites and enzymatic activities, revealing the enzymes' pivotal role in lipid oxidation. The interplay of temperature and time offers valuable insights for optimizing wheat flour maturation, ensuring superior quality for various applications.

19.
Clinics (Sao Paulo) ; 79: 100436, 2024.
Article in English | MEDLINE | ID: mdl-39096856

ABSTRACT

This study aimed to perform exhaustive bioinformatic analysis by using GSE29221 micro-array maps obtained from healthy controls and Type 2 Diabetes (T2DM) patients. Raw data are downloaded from the Gene Expression Omnibus database and processed by the limma package in R software to identify Differentially Expressed Genes (DEGs). Gene ontology functional analysis and Kyoto Gene Encyclopedia and Genome Pathway analysis are performed to determine the biological functions and pathways of DEGs. A protein interaction network is constructed using the STRING database and Cytoscape software to identify key genes. Finally, immune infiltration analysis is performed using the Cibersort method. This study has implications for understanding the underlying molecular mechanism of T2DM and provides potential targets for further research.


Subject(s)
Computational Biology , Diabetes Mellitus, Type 2 , Gene Expression Profiling , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Protein Interaction Maps/genetics , Gene Regulatory Networks/genetics , Gene Ontology , Databases, Genetic , Case-Control Studies
20.
Ann Hematol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196379

ABSTRACT

In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.

SELECTION OF CITATIONS
SEARCH DETAIL