Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 29(4): 1192-1204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212372

ABSTRACT

At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.


Subject(s)
CA3 Region, Hippocampal , Dentate Gyrus , Mice, Knockout , Mossy Fibers, Hippocampal , Neurotrophin 3 , Synapses , Animals , Dentate Gyrus/metabolism , Mossy Fibers, Hippocampal/metabolism , Synapses/metabolism , Mice , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Male , Female , CA3 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Excitatory Postsynaptic Potentials/physiology , Synaptic Transmission/physiology , Cognition/physiology , Hippocampus/metabolism , Mice, Inbred C57BL , Memory/physiology , Receptors, AMPA/metabolism
2.
SLAS Discov ; 28(3): 88-94, 2023 04.
Article in English | MEDLINE | ID: mdl-36842668

ABSTRACT

Deficiencies in brain-derived neurotrophic factor (BDNF) have been linked to several brain disorders, making compounds that can boost neuronal BDNF synthesis attractive as potential therapeutics. However, a sensitive and quantitative BDNF assay for high-throughput screening (HTS) is still missing. Here we report the generation of a new mouse Bdnf allele, BdnfNLuc, in which the sequence encoding nano luciferase (NLuc) is inserted into the Bdnf locus immediately before the stop codon so that the allele will produce a BDNF-NLuc fusion protein. BDNF-NLuc protein appears to function like BDNF as BdnfNLuc/NLuc homozygous mice grew and behaved almost normally. We were able to establish and optimize cultures of cortical and hippocampal BdnfNLuc/+ neurons isolated from mouse embryos in 384-well plates. We used the cultures as a phenotypic assay to detect the ability of 10 mM KCl to stimulate BDNF synthesis and achieved a reproducible Z' factor > 0.50 for the assay, a measure considered suitable for HTS. We successfully scaled up the assay to screen the 1280-compound LOPAC library (Library of Pharmacologically Active Compounds). The screen identified several BDNF-boosting compounds, one of which is Bay K8644, a L-type voltage-gated calcium channel (L-VGCC) agonist, which was previously shown to stimulate BDNF synthesis. These results indicate that our phenotypic neuronal assay is ready for HTS to identify novel BDNF-boosting compounds.


Subject(s)
Brain-Derived Neurotrophic Factor , High-Throughput Screening Assays , Mice , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Neurons/metabolism , Calcium Channels, L-Type/metabolism , Brain/metabolism
3.
Endocrinology ; 164(3)2023 01 09.
Article in English | MEDLINE | ID: mdl-36631165

ABSTRACT

High prevalence of obesity is attributable in part to consumption of highly palatable, fat-rich foods. However, the mechanism controlling dietary fat intake is largely unknown. In this study we investigated the role of brain-derived neurotrophic factor (BDNF) in the control of dietary fat intake in a mouse model that mimics the common human Val-to-Met (Val66Met) polymorphism that impairs BDNF release via the regulated secretory pathway. BdnfMet/Met mice gained weight much faster than wild-type (WT) mice and developed severe obesity due to marked hyperphagia when they were fed HFD. Hyperphagia in these mice worsened when the fat content in their diet was increased. Conversely, mice lacking leptin exhibited similar hyperphagia on chow and HFD. When 2 diets were provided simultaneously, WT and BdnfMet/Met mice showed a comparable preference for the more palatable diet rich in either fat or sucrose, indicating that increased hyperphagia on fat-rich diets in BdnfMet/Met mice is not due to enhanced hedonic drive. In support of this interpretation, WT and BdnfMet/Met mice increased calorie intake to a similar extent during the first day after chow was switched to HFD; however, WT mice decreased HFD intake faster than BdnfMet/Met mice in subsequent days. Furthermore, we found that refeeding after fasting or nocturnal feeding with HFD activated TrkB more strongly than with chow in the hypothalamus of WT mice, whereas TrkB activation under these 2 conditions was greatly attenuated in BdnfMet/Met mice. These results indicate that satiety factors generated during HFD feeding induce BDNF release to suppress excess dietary fat intake.


Subject(s)
Brain-Derived Neurotrophic Factor , Hyperphagia , Animals , Mice , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Diet , Diet, High-Fat , Dietary Fats/pharmacology , Hyperphagia/genetics , Obesity/genetics
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468645

ABSTRACT

Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.


Subject(s)
Appetite Regulation/genetics , Energy Metabolism/genetics , Membrane Glycoproteins/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/metabolism , Protein-Tyrosine Kinases/genetics , Thermogenesis/genetics , Animals , Eating/genetics , Female , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeostasis/genetics , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Nucleus Raphe Pallidus/cytology , Nucleus Raphe Pallidus/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Preoptic Area/cytology , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Red Fluorescent Protein
5.
Nat Commun ; 11(1): 1729, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32265438

ABSTRACT

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Subject(s)
Hyperphagia/metabolism , Membrane Glycoproteins/metabolism , Neurons/metabolism , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Appetite/genetics , Feeding Behavior/physiology , Female , Hyperphagia/genetics , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/genetics , Parabrachial Nucleus/cytology , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/physiopathology , Protein-Tyrosine Kinases/genetics , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/metabolism
6.
Nat Commun ; 11(1): 1797, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286273

ABSTRACT

Mutations that inactivate negative translation regulators cause autism spectrum disorders (ASD), which predominantly affect males and exhibit social interaction and communication deficits and repetitive behaviors. However, the cells that cause ASD through elevated protein synthesis resulting from these mutations remain unknown. Here we employ conditional overexpression of translation initiation factor eIF4E to increase protein synthesis in specific brain cells. We show that exaggerated translation in microglia, but not neurons or astrocytes, leads to autism-like behaviors in male mice. Although microglial eIF4E overexpression elevates translation in both sexes, it only increases microglial density and size in males, accompanied by microglial shift from homeostatic to a functional state with enhanced phagocytic capacity but reduced motility and synapse engulfment. Consequently, cortical neurons in the mice have higher synapse density, neuroligins, and excitation-to-inhibition ratio compared to control mice. We propose that functional perturbation of male microglia is an important cause for sex-biased ASD.


Subject(s)
Autistic Disorder/metabolism , Behavior, Animal , Microglia/metabolism , Protein Biosynthesis , Animals , Calcium-Binding Proteins/metabolism , Cell Movement , Female , Gene Expression Profiling , Genotype , Homeostasis , Male , Mice, Knockout , Microfilament Proteins/metabolism , Neurons/metabolism , PTEN Phosphohydrolase/metabolism , Phagocytosis , Prefrontal Cortex/metabolism , Prefrontal Cortex/ultrastructure , Social Behavior , Synapses/metabolism
7.
Proc Natl Acad Sci U S A ; 116(8): 3256-3261, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718415

ABSTRACT

Genetic evidence indicates that brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor plays a critical role in the control of energy balance. Mutations in the BDNF or the TrkB-encoding NTRK2 gene have been found to cause severe obesity in humans and mice. However, it remains unknown which brain neurons express TrkB to control body weight. Here, we report that TrkB-expressing neurons in the dorsomedial hypothalamus (DMH) regulate food intake. We found that the DMH contains both glutamatergic and GABAergic TrkB-expressing neurons, some of which also express the leptin receptor (LepR). As revealed by Fos immunohistochemistry, a significant number of TrkB-expressing DMH (DMHTrkB) neurons were activated upon either overnight fasting or after refeeding. Chemogenetic activation of DMHTrkB neurons strongly suppressed feeding in the dark cycle when mice are physiologically hungry, whereas chemogenetic inhibition of DMHTrkB neurons greatly promoted feeding in the light cycle when mice are physiologically satiated, without affecting feeding in the dark cycle. Neuronal tracing revealed that DMHTrkB neurons do not innervate neurons expressing agouti-related protein in the arcuate nucleus, indicating that DMHTrkB neurons are distinct from previously identified LepR-expressing GABAergic DMH neurons that suppress feeding. Furthermore, selective Ntrk2 deletion in the DMH of adult mice led to hyperphagia, reduced energy expenditure, and obesity. Thus, our data show that DMHTrkB neurons are a population of neurons that are necessary and sufficient to suppress appetite and maintain physiological satiation. Pharmacological activation of these neurons could be a therapeutic intervention for the treatment of obesity.


Subject(s)
Eating/genetics , Energy Metabolism/genetics , Membrane Glycoproteins/genetics , Obesity/genetics , Protein-Tyrosine Kinases/genetics , Animals , Brain-Derived Neurotrophic Factor/genetics , GABAergic Neurons/metabolism , Gene Expression Regulation/genetics , Homeostasis/genetics , Humans , Hypothalamus/metabolism , Mice , Obesity/drug therapy , Obesity/pathology , Photoperiod , Receptors, Leptin
8.
Cell Metab ; 29(4): 917-931.e4, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30661931

ABSTRACT

Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.


Subject(s)
Anti-Anxiety Agents/pharmacology , Bromazepam/pharmacology , Carbolines/pharmacology , Energy Metabolism/drug effects , Obesity/drug therapy , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Anti-Anxiety Agents/administration & dosage , Body Weight/drug effects , Bromazepam/administration & dosage , Carbolines/administration & dosage , Diet , Mice , Mice, Inbred Strains , Obesity/chemically induced , Obesity/metabolism
9.
Mol Metab ; 4(6): 471-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26042201

ABSTRACT

OBJECTIVE: Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development, and the Bdnf gene produces two populations of transcripts with either a short or long 3' untranslated region (3' UTR). Deficiencies in BDNF signaling have been shown to cause severe obesity in humans; however, it remains unknown how BDNF signaling impacts the organization of neuronal circuits that control energy balance. METHODS: We examined the role of BDNF on survival, axonal projections, and synaptic inputs of neurons in the arcuate nucleus (ARH), a structure critical for the control of energy balance, using Bdnf (klox/klox) mice, which lack long 3' UTR Bdnf mRNA and develop severe hyperphagic obesity. RESULTS: We found that a small fraction of neurons that express the receptor for BDNF, TrkB, also expressed proopiomelanocortin (POMC) or neuropeptide Y (NPY)/agouti-related protein (AgRP) in the ARH. Bdnf(klox/klox) mice had normal numbers of POMC, NPY, and TrkB neurons in the ARH; however, retrograde labeling revealed a drastic reduction in the number of ARH axons that project to the paraventricular hypothalamus (PVH) in these mice. In addition, fewer POMC and AgRP axons were found in the dorsomedial hypothalamic nucleus (DMH) and the lateral part of PVH, respectively, in Bdnf (klox/klox) mice. Using immunohistochemistry, we examined the impact of BDNF deficiency on inputs to ARH neurons. We found that excitatory inputs onto POMC and NPY neurons were increased and decreased, respectively, in Bdnf (klox/klox) mice, likely due to a compensatory response to marked hyperphagia displayed by the mutant mice. CONCLUSION: This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

10.
Cell Metab ; 22(1): 175-88, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26073495

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a key regulator of energy balance; however, its underlying mechanism remains unknown. By analyzing BDNF-expressing neurons in paraventricular hypothalamus (PVH), we have uncovered neural circuits that control energy balance. The Bdnf gene in the PVH was mostly expressed in previously undefined neurons, and its deletion caused hyperphagia, reduced locomotor activity, impaired thermogenesis, and severe obesity. Hyperphagia and reduced locomotor activity were associated with Bdnf deletion in anterior PVH, whereas BDNF neurons in medial and posterior PVH drive thermogenesis by projecting to spinal cord and forming polysynaptic connections to brown adipose tissues. Furthermore, BDNF expression in the PVH was increased in response to cold exposure, and its ablation caused atrophy of sympathetic preganglionic neurons. Thus, BDNF neurons in anterior PVH control energy intake and locomotor activity, whereas those in medial and posterior PVH promote thermogenesis by releasing BDNF into spinal cord to boost sympathetic outflow.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Energy Metabolism , Feeding Behavior , Hypothalamus/cytology , Hypothalamus/physiology , Neurons/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Female , Gene Deletion , Hyperphagia/genetics , Hyperphagia/metabolism , Hyperphagia/pathology , Hypothalamus/pathology , Locomotion , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , Thermogenesis
11.
Mol Metab ; 2(4): 491-7, 2013.
Article in English | MEDLINE | ID: mdl-24327964

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus.

12.
J Neurosci ; 32(41): 14318-30, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23055503

ABSTRACT

Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type (WT) mice, but not from Bdnf(klox/klox) mice where the long 3' untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated release of dendritic BDNF translated from long 3' UTR Bdnf mRNA in cultured hippocampal neurons, but not from short 3' UTR Bdnf mRNA. Bdnf(klox/klox) mice exhibited reduced expression of glutamic acid decarboxylase 65 (a GABA synthase), increased proliferation of progenitor cells, and impaired differentiation and maturation of newborn neurons in the SGZ. These deficits in adult neurogenesis were rescued with administration of phenobarbital, an enhancer of GABA(A) receptor activity. Furthermore, we observed similar neurogenesis deficits in mice where the receptor for BDNF, TrkB, was selectively abolished in parvalbumin (PV)-expressing GABAergic interneurons. Thus, our data suggest that locally synthesized BDNF in dendrites of granule cells promotes differentiation and maturation of progenitor cells in the SGZ by enhancing GABA release, at least in part, from PV-expressing GABAergic interneurons.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Synaptic Transmission/genetics , Up-Regulation/genetics , gamma-Aminobutyric Acid/biosynthesis , Age Factors , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell Differentiation/genetics , Cells, Cultured , Female , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurogenesis/physiology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
13.
Nat Med ; 18(4): 564-71, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426422

ABSTRACT

Mutations in the Bdnf gene, which produces transcripts with either short or long 3' untranslated regions (3' UTRs), cause human obesity; however, the precise role of brain-derived neurotrophic factor (BDNF) in the regulation of energy balance is unknown. Here we show the relationship between Bdnf mRNA with a long 3' UTR (long 3' UTR Bdnf mRNA), leptin, neuronal activation and body weight. We found that long 3' UTR Bdnf mRNA was enriched in the dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites. Furthermore, mice harboring a truncated long Bdnf 3' UTR developed severe hyperphagic obesity, which was completely reversed by viral expression of long 3' UTR Bdnf mRNA in the hypothalamus. In these mice, the ability of leptin to activate hypothalamic neurons and inhibit food intake was compromised despite normal activation of leptin receptors. These results reveal a novel mechanism linking leptin action to BDNF expression during hypothalamic-mediated regulation of body weight, while also implicating dendritic protein synthesis in this process.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Dendrites/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Leptin/pharmacology , RNA, Messenger/metabolism , 3' Untranslated Regions/genetics , Age Factors , Analysis of Variance , Animals , Body Weight/genetics , Cells, Cultured , Dendrites/genetics , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hypothalamus/cytology , Insulin/pharmacology , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Obesity/genetics , Obesity/pathology , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Insulin/metabolism , Receptor, trkB/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transduction, Genetic
14.
Brain Res ; 1432: 7-14, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22137655

ABSTRACT

Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates recombinant NMDA receptor currents in Xenopus oocytes. We have previously found that insulin's potentiation of NMDA receptor currents in oocytes occurs in a subunit specific manner and via phosphorylation of specific C-terminal sites by protein tyrosine kinases (PTKs) and C-type protein kinases (PKCs). Insulin-mediated current potentiation of receptors containing the NR2A subunit occurs solely through the activation of PKCs. Activation of phosphoinositide 3-kinase (PI 3-kinase) is known to trigger many insulin-stimulated signaling pathways, and we show here that it lies at a critical step in the insulin-mediated potentiation of NMDA receptor currents. Incubation with the PI 3-kinase inhibitor wortmannin eliminates insulin potentiation of NMDA receptor currents in the oocytes. Atypical isoforms of PKC are known to be activated downstream in the insulin signaling pathway via activation of PI 3-kinase. We demonstrate that the atypical isoform PKC zeta (PKCζ) has a role in insulin-stimulated current potentiation of NR2A-containing NMDA receptors using an isoform-specific pseudosubstrate inhibitor of PKCζ.


Subject(s)
Insulin/physiology , Oocytes/physiology , Phosphatidylinositol 3-Kinases/physiology , Protein Kinase C/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Androstadienes/pharmacology , Animals , Enzyme Inhibitors/pharmacology , Female , Oocytes/drug effects , Oocytes/enzymology , Phosphoinositide-3 Kinase Inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , Substrate Specificity/drug effects , Substrate Specificity/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Wortmannin , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 108(4): 1669-74, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21205893

ABSTRACT

In the peripheral nervous system, target tissues control the final size of innervating neuronal populations by producing limited amounts of survival-promoting neurotrophic factors during development. However, it remains largely unknown if the same principle works to regulate the size of neuronal populations in the developing brain. Here we show that neurotrophin signaling mediated by the TrkB receptor controls striatal size by promoting the survival of developing medium-sized spiny neurons (MSNs). Selective deletion of the gene for the TrkB receptor in striatal progenitors, using the Dlx5/6-Cre transgene, led to a hindpaw-clasping phenotype and a 50% loss of MSNs without affecting striatal interneurons. This loss resulted mainly from increased apoptosis of newborn MSNs within their birthplace, the lateral ganglionic eminence. Among MSNs, those expressing the dopamine receptor D2 (DRD2) were most affected, as indicated by a drastic loss of these neurons and specific down-regulation of the DRD2 and enkephalin. This specific phenotype of mutant animals is likely due to preferential TrkB expression in DRD2 MSNs. These findings suggest that neurotrophins can control the size of neuronal populations in the brain by promoting the survival of newborn neurons before they migrate to their final destinations.


Subject(s)
Corpus Striatum/metabolism , Neurons/metabolism , Receptor, trkB/metabolism , Animals , Animals, Newborn , Apoptosis , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Count , Corpus Striatum/cytology , Corpus Striatum/growth & development , Down-Regulation , Enkephalins/metabolism , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunoblotting , Immunohistochemistry , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/cytology , Receptor, trkB/genetics , Receptors, Dopamine D2/metabolism , Time Factors
16.
Cell ; 134(1): 175-87, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18614020

ABSTRACT

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs are restricted to somata, whereas the long 3' UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3' UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.


Subject(s)
3' Untranslated Regions/analysis , 3' Untranslated Regions/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Animals , Dendrites/chemistry , Mice , Mice, Inbred C57BL , Neurons/chemistry , Neurons/cytology , Polyadenylation , Protein Biosynthesis , Receptor, trkB/analysis
17.
Genesis ; 46(6): 289-93, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18543315

ABSTRACT

Thalamocortical input to layer 4 carries the major ascending sensory information to the mammalian sensory cortex and is crucial for the function and plasticity of sensory cortical areas. Here we report identification of a Six3-cre transgene that is selectively expressed in layer 4 of sensory cortical areas but not in the thalamus. In the mature somatosensory cortex Cre recombinase expressed from the transgene is able to mediate gene deletion in the overwhelming majority of layer 4 neurons, including GABAergic interneurons. The gene deletion in layer 4 mainly occurs during the first postnatal week. This cre transgene therefore provides a useful tool for examining the role of proteins expressed in layer 4 neurons.


Subject(s)
Eye Proteins/genetics , Gene Deletion , Homeodomain Proteins/genetics , Integrases/metabolism , Nerve Tissue Proteins/genetics , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Animals , Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Integrases/genetics , Interneurons/physiology , Mice , Mice, Transgenic , Neurons/physiology , Transgenes , Homeobox Protein SIX3
SELECTION OF CITATIONS
SEARCH DETAIL
...