Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Org Lett ; 26(22): 4672-4677, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38787765

ABSTRACT

Picrachinentins A-F (1-6, respectively), six novel cyclopeptide alkaloid-type burpitides (CPABs), were isolated and fully elucidated from the EtOH extract of the stems and leaves of Picrasma chinensis. Structurally, compounds 1-6 have a 14-membered paracyclophane ring system that was closed through an ether bond between the ß-hydroxy amino acid and tyrosine and modified with a 4,5-methylenedioxybenzoyloxy (MDBz, 3 and 5) or hexanoyl (Hexa, 1, 2, 4, and 6) group at the N-terminus. Interestingly, this is the first report on the isolation and characterization of CPABs from plants of the Simaroubaceae family. In addition, all compounds showed a neuroprotective effect against H2O2-damaged SH-SY5Y cells. Compound 1 was further investigated for its neuroprotective activities using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease animal model, and it dramatically improved MPTP-impaired motor behavioral performance. Biochemical analysis revealed compound 1 restored the tyrosine hydroxylase expression in the striatum of the MPTP-damaged mouse brain, which demonstrates its protective effect on dopaminergic neurons.


Subject(s)
Alkaloids , Neuroprotective Agents , Peptides, Cyclic , Picrasma , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/isolation & purification , Mice , Picrasma/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Plant Leaves/chemistry , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
2.
Front Oncol ; 14: 1267596, 2024.
Article in English | MEDLINE | ID: mdl-38577325

ABSTRACT

Objective: We aimed to evaluate the diagnostic effectiveness of computed tomography (CT)-based radiomics for predicting lymph node metastasis (LNM) in patients diagnosed with esophageal cancer (EC). Methods: The present study conducted a comprehensive search by accessing the following databases: PubMed, Embase, Cochrane Library, and Web of Science, with the aim of identifying relevant studies published until July 10th, 2023. The diagnostic accuracy was summarized using the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC). The researchers utilized Spearman's correlation coefficient for assessing the threshold effect, besides performing meta-regression and subgroup analysis for the exploration of possible heterogeneity sources. The quality assessment was conducted using the Quality Assessment of Diagnostic Accuracy Studies-2 and the Radiomics Quality Score (RQS). Results: The meta-analysis included six studies conducted from 2018 to 2022, with 483 patients enrolled and LNM rates ranging from 27.2% to 59.4%. The pooled sensitivity, specificity, PLR, NLR, DOR, and AUC, along with their corresponding 95% CI, were 0.73 (0.67, 0.79), 0.76 (0.69, 0.83), 3.1 (2.3, 4.2), 0.35 (0.28, 0.44), 9 (6, 14), and 0.78 (0.74, 0.81), respectively. The results demonstrated the absence of significant heterogeneity in sensitivity, while significant heterogeneity was observed in specificity; no threshold effect was detected. The observed heterogeneity in the specificity was attributed to the sample size and CT-scan phases (P < 0.05). The included studies exhibited suboptimal quality, with RQS ranging from 14 to 16 out of 36. However, most of the enrolled studies exhibited a low-risk bias and minimal concerns relating to applicability. Conclusion: The present meta-analysis indicated that CT-based radiomics demonstrated a favorable diagnostic performance in predicting LNM in EC. Nevertheless, additional high-quality, large-scale, and multicenter trials are warranted to corroborate these findings. Systematic Review Registration: Open Science Framework platform at https://osf.io/5zcnd.

3.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546629

ABSTRACT

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Subject(s)
Heart , Ventricular Remodeling , Animals , Mice , Ventricular Remodeling/genetics , Mitochondria , Hypertrophy , Electron Transport Complex I/genetics , Nucleotides , Hydrolases , Mitochondrial Proteins/genetics
4.
Plants (Basel) ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38498447

ABSTRACT

Heat shock protein 20 (HSP20) serves as a chaperone and plays roles in numerous biological processes, but the codon usage bias (CUB) of its genes has remained unexplored. This study identified 140 HSP20 genes from four cruciferous species, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Camelina sativa, that were identified from the Ensembl plants database, and we subsequently investigated their CUB. As a result, the base composition analysis revealed that the overall GC content of HSP20 genes was below 50%. The overall GC content significantly correlated with the constituents at three codon positions, implying that both mutation pressure and natural selection might contribute to the CUB. The relatively high ENc values suggested that the CUB of the HSP20 genes in four cruciferous species was relatively weak. Subsequently, ENc exhibited a negative correlation with gene expression levels. Analyses, including ENc-plot analysis, neutral analysis, and PR2 bias, revealed that natural selection mainly shaped the CUB patterns of HSP20 genes in these species. In addition, a total of 12 optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified across the four species. A neighbor-joining phylogenetic analysis based on coding sequences (CDS) showed that the 140 HSP20 genes were strictly and distinctly clustered into 12 subfamilies. Principal component analysis and cluster analysis based on relative synonymous codon usage (RSCU) values supported the fact that the CUB pattern was consistent with the genetic relationship at the gene level and (or) species levels. These results will not only enrich the HSP20 gene resource but also advance our understanding of the CUB of HSP20 genes, which may underlie the theoretical basis for exploration of their genetic and evolutionary pattern.

5.
Fitoterapia ; 175: 105908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479621

ABSTRACT

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Subject(s)
Neuroprotective Agents , Picrasma , Plant Leaves , Plant Stems , Sesquiterpenes , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Mice , Humans , Cell Line, Tumor , Molecular Structure , Picrasma/chemistry , Plant Stems/chemistry , Plant Leaves/chemistry , Male , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , China , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mice, Inbred C57BL
6.
Phytochemistry ; 222: 114068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554895

ABSTRACT

Seven undescribed polyoxygenated ursane-type triterpenoids (vitnegundins A-G), three undescribed triterpenoid saponins (vitnegundins H-J), and 17 known ones were isolated from an EtOH extract of the aerial parts of Vitex negundo L. The structures of the undescribed compounds were established by extensive spectroscopic analysis. The absolute configurations of vitnegundins A, B, and E were determined by single-crystal X-ray diffraction data. Vitnegundins B-D are pentacyclic triterpenoids possessing rare cis-fused C/D rings and vitnegundins C-H represent undescribed ursane-type triterpenoids with 12,19-epoxy moiety. In the biological activity assay, vitnegundin A, vitnegundin E, and swinhoeic acid displayed inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 11.8, 44.2, and 19.6 µM, respectively.


Subject(s)
Anti-Inflammatory Agents , Plant Extracts , Saponins , Triterpenes , Vitex , Vitex/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Saponins/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Ethanol/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , X-Ray Diffraction , Inhibitory Concentration 50 , Microglia/drug effects , Cell Line
8.
Nat Prod Res ; : 1-6, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372270

ABSTRACT

A new isopimarane-type diterpene clinacanoid A (1) together with seven known terpenoids (2-8) were obtained from the Clinacanthus nutans. Their structures were elucidated based on extensive spectroscopic analysis (NMR, HR-ESI-MS), and the absolute configuration of 1 was established based on single crystal X-ray diffraction. The inhibitory activity of all the compounds on NO production in lipopolysaccharide-induced (LPS) mouse leukemic monocyte macrophage RAW264.7 cells was evaluated. Among them, compounds 1 and 3 showed potential anti-inflammatory activities, with IC50 values of 13.3 ± 0.3 and 12.4 ± 0.4 µM, respectively.

9.
J Psychiatr Res ; 171: 43-51, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244332

ABSTRACT

Facing long-term separation from their parents, left-behind children are at risk of the co-occurrence of internalizing and externalizing problems. Although previous research has gained substantial information examining the relationship between anxiety, depression, and internet addiction at the aggregate level of variables, little is known about the heterogeneity and interactions between these components at the symptom level with a large-scale purposive sample. Adopting the network approach, two network pathways, depression and anxiety, and associations between these variables and internet addiction were constructed. Our sample included 5367 left-behind children (Mage = 13.57; SDage = 1.37; 50.07% females). Relevant bridging, central symptoms, and network stability were identified. Two relatively stable networks were obtained. For the network of anxiety and depression, sleep problems and tachycardia were vital bridging symptoms. Central symptoms, including tachycardia, restlessness, fatigue, and emptiness, were symptoms of depression. For the network of symptoms of anxiety, depression, and internet addiction, the bridging symptoms remained the same, and the central symptoms included tachycardia, restlessness, loss of control, and emptiness. By identifying relevant bridging and central symptoms, those with higher levels of these symptoms could be regarded as intervention targets, providing a reference for the current issue of valuing diagnosis over prevention in left-behind children.


Subject(s)
Depression , Internet Addiction Disorder , Child , Female , Humans , Adolescent , Infant , Male , Depression/epidemiology , Psychomotor Agitation , Anxiety/epidemiology , Tachycardia , Internet
10.
Phytochemistry ; 218: 113932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056516

ABSTRACT

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Subject(s)
Diterpenes, Clerodane , Menispermaceae , Tinospora , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Tinospora/chemistry , Lipopolysaccharides/pharmacology , Plant Roots/chemistry , Molecular Structure
11.
Microbes Infect ; 26(1-2): 105244, 2024.
Article in English | MEDLINE | ID: mdl-37914020

ABSTRACT

OBJECTIVE: This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process. METHODS: We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 µg/mL metronidazole and 300 µg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 µg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively. RESULTS: P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4. CONCLUSION: CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.


Subject(s)
Alkaloids , Corydalis , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Porphyromonas gingivalis/metabolism , Corydalis/metabolism , Alkaloids/metabolism , Alkaloids/pharmacology , Macrophages/microbiology
12.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814990

ABSTRACT

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/metabolism , Apoptosis , Gliosis/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Spinal Cord/metabolism
13.
Bioorg Chem ; 143: 107060, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154389

ABSTRACT

Phytochemical investigation on the aerial parts of Gnetum parvifolium led to the isolation of 15 new and eight known structurally diverse stilbenes. The isolated compounds comprised (E)- or (Z)-stilbene (1-6, 15-20), dihydrostilbene (21), phenylbenzofuran (7, 8, 22), benzylated stilbene (9-11), benzylated stilbene dimer (12), and nitrogen-containing stilbene (13a, 13b, 14) types. The structures of the new compounds (1-12, 13a, 13b, 14) were established through spectroscopic analyses and experimental and calculated ECD data. Compound 12 is the first stilbene dimer connected through a benzyl group. In the anti-neuroinflammatory activity assay, compounds 4, 5, 9-11, 13b, and 16-21 displayed significant inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 0.35-16.1 µM. Compound 10 had the most potent activity (IC50 = 0.35 µM), and the further research indicated that it could decrease the mRNA levels of iNOS, IL-1ß, IL-6, and TNF-α in a dose-dependent manner.


Subject(s)
Gnetum , Stilbenes , Molecular Structure , Gnetum/chemistry , Stilbenes/pharmacology , Stilbenes/chemistry
14.
Front Plant Sci ; 14: 1270396, 2023.
Article in English | MEDLINE | ID: mdl-37929171

ABSTRACT

Due to global climate change, drought is emerging as a major threat to plant growth and agricultural productivity. Abscisic acid (ABA) has been implicated in plant drought tolerance, however, its retarding effects on plant growth cannot be ignored. The reactions catalyzed by 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) proteins are critical steps within the isoprenoid biosynthesis in plants. Here, five DXS (CtDXS1-5) and two DXR (CtDXR1-2) genes were identified from Cassia tora genome. Based on multiple assays including the phylogeny, cis-acting element, expression pattern, and subcellular localization, CtDXS1 and CtDXR1 genes might be potential candidates controlling the isoprenoid biosynthesis. Intriguingly, CtDXS1 transgenic plants resulted in drought tolerance but retardant growth, while CtDXR1 transgenic plants exhibited both enhanced drought tolerance and increased growth. By comparison of ß-carotene, chlorophyll, abscisic acid (ABA) and gibberellin 3 (GA3) contents in wild-type and transgenic plants, the absolute contents and (or) altered GA3/ABA levels were suggested to be responsible for the balance between drought tolerance and plant growth. The transcriptome of CtDXR1 transgenic plants suggested that the transcript levels of key genes, such as DXS, 9-cis-epoxycarotenoid dioxygenases (NCED), ent-kaurene synthase (KS) and etc, involved with chlorophyll, ß-carotene, ABA and GA3 biosynthesis were induced and their contents increased accordingly. Collectively, the trade-off effect induced by CtDXR1 was associated with redesigning architecture in phytohormone homeostasis and thus was highlighted for future breeding purposes.

15.
Sci Rep ; 13(1): 18801, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914761

ABSTRACT

The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.


Subject(s)
Climate Change , Fritillaria , Fritillaria/genetics , Ecosystem , China , Temperature
16.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003462

ABSTRACT

Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.


Subject(s)
Anthozoa , Cordia , Animals , Phylogeny , Anthozoa/genetics , Genome , Repetitive Sequences, Nucleic Acid , Molecular Sequence Annotation , Chromosomes
17.
Clin Med Insights Oncol ; 17: 11795549231201122, 2023.
Article in English | MEDLINE | ID: mdl-37869472

ABSTRACT

Background: The early detection of clinically significant prostate cancer (csPCa) through the integration of multidimensional parameters presents a promising avenue for improving survival outcomes for this fatal disease. This study aimed to assess the contribution of prostate transition zone (TZ) to predictive models based on the prostate health index (PHI), with the goal of enhancing early detection of csPCa in the prostate-specific antigen (PSA) gray zone. Methods: In this observational cross-sectional study, a total of 177 PSA gray zone patients (total prostate-specific antigen [tPSA] level ranging from 4.0 to 10.0 ng/mL) were recruited and received PHI detections from August 2020 to March 2022. Prostatic morphologies especially the TZ morphological parameters were measured by transrectal ultrasound (TRUS). Results: Univariable logistic regression indicated prostatic morphological parameters including total prostate volume (PV) indexes and transitional zone volume indexes were all associated with csPCa (P < .05), while the multivariable analysis demonstrated that C-reactive protein (CRP), PHI, PHI density (PHID), and PHI transition zone density (PHI-TZD) were the 4 independent risk factors. The receiver-operating characteristic (ROC) curve analysis suggested that integrated predictive models (PHID, PHI-TZD) yield area under the curves (AUCs) of 0.9135 and 0.9105 in csPCa prediction, which shows a relatively satisfactory predictive capability compared with other predictors. Moreover, the PHI-TZD outperformed PHID by avoiding 30 patients' unnecessary biopsies while maintaining 74.36% specificity at a sensitivity of 90%. Decision-curve analysis (DCA) confirmed the comparable performance of the multivariable full-risk prediction models, without the inclusion of the net benefit, thereby highlighting the superior diagnostic efficacy of PHID and PHI-TZD in comparison with other diagnostic models, in both univariable and multivariable models. Conclusion: Our data confirmed the value of prostate TZ morphological parameters and suggested a significant advantage for the TZ-adjusted PHI predictive model (PHI-TZD) compared with PHI and PHID in the early detection of gray zone csPCa under specific conditions.

18.
Urol Case Rep ; 51: 102547, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37701418

ABSTRACT

Severe consequences can ensue from the rupture and hemorrhage of a renal artery pseudoaneurysm, necessitating immediate intervention upon detection. To date, no reports exist on the development of renal artery pseudoaneurysms as a result of renal abscesses. This document introduces the first reported case of this occurrence.

19.
Phytochemistry ; 214: 113831, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598994

ABSTRACT

Fritillaria unibracteata is an endangered medicinal plant whose bulb has been used as a Chinese herb to suppress cough, asthma and excessive phlegm for centuries. Steroidal alkaloids, which are synthesized via the steroid synthesis pathways, are their significant bioactive constituents. However, few studies on genes involved in steroidal alkaloid biosynthesis in F. unibracteata have been reported, mainly due to the lack of the F. unibracteata genome. In this paper, comparative transcriptomic and metabolomic analyses of four different tissues of F. unibracteata (leaves, flowers, stems, and bulbs) were performed. Imperialine, peiminine, and peimisine were among the significant bioactive compounds that were considerably abundant in bulb tissue, according to the metabolomic findings. Then, 83.60 Gb transcriptome sequencing of four different tissues was performed, of which one gene encoding phosphomevalonate kinase was directly functionally characterized to verify the accuracy of sequences obtained from the transcriptome. A total of 9217 differentially expressed unigenes (DEGs) were identified in four different tissues of F. unibracteata. GO and KEGG enrichments revealed that phenylpropanoid biosynthesis, MVA-mediated terpenoid backbone biosynthesis, and steroid biosynthesis were enriched in bulb tissue, whereas enrichment of MEP-mediated terpenoid backbone biosynthesis, photosynthesis, photosynthesis-antenna protein and carotenoid biosynthesis was observed in aerial tissues. Moreover, clustering analysis indicated that the downstream steroid biosynthesis pathway was more important in steroidal alkaloid biosynthesis compared to the upstream terpenoid backbone biosynthesis pathway. Hence, MVA-mediated biosynthesis of steroidal alkaloids was proposed, in which 15 bulb-clustered DEGs were positively correlated with a high accumulation of bioactive steroid alkaloids, further validating our proposal. In addition, 36 CYP450s showing a positive correlation with bioactive steroidal alkaloids provided candidate enzymes to catalyze the subsequent steps of steroidal alkaloid biosynthesis. In addition, the transcription factors and ABC transporters clustered in bulb tissue might be responsible for the regulation and transportation of steroidal alkaloid biosynthesis. Protein-protein interaction analysis implied a highly complex steroid alkaloid biosynthesis network in which delta (24)-sterol reductase might be one of the central catalysts. Based on the integrated transcriptome and metabolome, this current study is a first step in understanding the tissue-specific biosynthesis of steroidal alkaloids in F. unibracteata. Furthermore, key genes and regulators identified herein could facilitate metabolic engineering to improve steroidal alkaloids in F. unibracteata.


Subject(s)
Alkaloids , Fritillaria , Transcriptome , Steroids , Terpenes
20.
Bioorg Chem ; 140: 106812, 2023 11.
Article in English | MEDLINE | ID: mdl-37651894

ABSTRACT

A total of 17 structurally diverse clerodane diterpenoids, including ten undescribed clerodane diterpenoids (tinopanoids K-T, 1-10) and seven known compounds (11-17), were isolated from the vines and leaves of Tinospora crispa. Compound 3 has not only bear the dominant substituents of γ-hydroxy-α, ß-unsaturated-γ-lactone with anti-inflammatory activity, but also a ternary epoxy structure at C-3/C-4. The planar structures and relative configurations of the clerodane diterpenoids were elucidated by spectroscopic data interpretation. The absolute configurations of compounds 1, 4, 8 and 13 were determined by single-crystal X-ray crystallographic, while that of compound 3 was determined using computed ECD data and single crystal X-ray diffraction of related p-bromobenzoate ester (3a). Subsequently, all compounds were evaluated for their inhibitory effect on nitric oxide (NO) production of LPS-activated BV-2 cells, and compounds 3 and 8 exhibited better NO inhibitory potency, with IC50 values of 5.6 and 13.8 µM than the positive control minocycline (Mino, IC50 = 22.9 µM). The corresponding results of western blot analysis and qRT-PCR revealed that compound 3 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions, mRNA levels of pro-inflammatory cytokins of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß). The underlying mechanism by which compound 3 exerted anti-neuroinflammatory effects was investigated by western blot and immunofluorescence assay, which suggested compound 3 inhibited LPS induced neuroinflammation via the suppression of toll-like receptor 4 (TLR4) dependent Signal Transducer and Activator of Transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of Heme Oxygenase-1 (HO-1) mediated signals.


Subject(s)
Diterpenes, Clerodane , Tinospora , Diterpenes, Clerodane/pharmacology , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Blotting, Western
SELECTION OF CITATIONS
SEARCH DETAIL
...