Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 18(9): 1775-1792, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37703822

ABSTRACT

Histone H3 lysine 9 (H3K9) methylation, as a hallmark of heterochromatin, has a central role in cell lineage and fate determination. Although evidence of a cooperation between H3K9 methylation writers and their readers has started to emerge, their actual interplay remains elusive. Here, we show that loss of H3K9 methylation readers, the Hp1 family, causes reduced expression of H3K9 methyltransferases, and that this subsequently leads to the exit of embryonic stem cells (ESCs) from pluripotency and a reciprocal gain of lineage-specific characteristics. Importantly, the phenotypes of Hp1-null ESCs can be rescued by ectopic expression of Setdb1, Nanog, and Oct4. Furthermore, Setdb1 ablation results in loss of ESC identity, which is accompanied by a reduction in the expression of Hp1 genes. Together, our data support a model in which the safeguarding of ESC identity involves the cooperation between the H3K9 methylation writers and their readers.


Subject(s)
Cell Physiological Phenomena , Embryonic Stem Cells , Methylation , Cell Lineage , Chromosomal Proteins, Non-Histone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...