Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Immunology ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471664

ABSTRACT

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.

2.
Mater Horiz ; 11(3): 822-834, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38018413

ABSTRACT

Recent advances in bioelectronics in mechanical and electrophysiological signal detection are remarkable, but there are still limitations because they are inevitably affected by environmental noise and motion artifacts. Thus, we develop a gel damper-integrated crack sensor inspired by the vibration response of the viscoelastic cuticular pad and slit organs in a spider. Benefitting from the specific crack structure design, the sensor possesses excellent sensing behaviors, including a low detection limit (0.05% strain), ultrafast response ability (3.4 ms) and superior durability (>300 000 cycles). Such typical low-amplitude fast response properties allow the ability to accurately perceive vibration frequency and waveform. In addition, the gel damper exhibits frequency-dependent dynamic mechanical behavior that results in improved stability and reliability of signal acquisition by providing shock resistance and isolating external factors. They effectively attenuate external motion artifacts and low-frequency mechanical noise, resulting in cleaner and more reliable signal acquisition. When the gel damper is combined with the crack-based vibration sensor, the integrated sensor exhibits superior anti-interference capability and frequency selectivity, demonstrating its effectiveness in extracting genuine vocal vibration signals from raw voice recordings. The integration of damping materials with sensors offers an efficient approach to improving signal acquisition and signal quality in various applications.


Subject(s)
Spiders , Vibration , Animals , Spiders/physiology , Reproducibility of Results , Motion
3.
Front Med (Lausanne) ; 10: 1201866, 2023.
Article in English | MEDLINE | ID: mdl-37293309

ABSTRACT

Background: In recent years, the number of people using mobile applications to promote health and welfare has exponentially increased. However, there are fewer applications in the field of ERAS. How to promote the rapid rehabilitation of patients with malignant tumor surgery during perioperative period and the mastery of its long-term nutritional state is a problem to be solved. Objective: The purpose of this study is to design and develop a mobile application, and use Internet technology to better manage nutritional health to achieve rapid recovery of patients with malignant tumor surgery. Methods: This study is divided into three stages: (1) Design: use participating design to make the MHEALTH APP adapt to the clinical practice of nutritional health management; (2) Development: the WeChat Applet of Nutrition and Health Assessment (WANHA) developed using the Internet technology development, and web management programs. (3) Procedure test: patients and medical staff evaluate WANHA's quality (UMARS), availability (SUS), and satisfaction, and conduct semi-structured interviews. Results: In this study, 192 patients with malignant tumor surgery, 20 medical staff used WANHA. Patients with nutritional risks are supported by supporting treatment. The results show that patients who have not been treated during the perioperative period, the incidence of postoperative complications (22.4%) and the average hospitalization time after surgery decreased significantly. The incidence of nutritional risks is nearly more than the preoperative level. 45 patients and 20 medical staff participated in the survey of WANHA's SUS, UMARS, and satisfaction. In the interview, most patients and medical personnel believe that the procedure can improve the current medical services and nutritional health knowledge levels, promote the communication of medical staff and patients, and strengthen the nutritional health management of patients with malignant tumors under the concept of ERAS. Conclusion: WeChat Applet of Nutrition and Health Assessment is a MHEALTH APP that enhances the nutrition and health management of patients with perioperative period. It can play a huge role in improving medical services, increasing patient satisfaction, and ERAS.

4.
Sci Rep ; 13(1): 7523, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160927

ABSTRACT

Gastric cancer (GC) is one of the major causes of cancer deaths with 5-year survival ratio of 20%. RNU12 is one of long noncoding RNAs (lncRNAs) regulating the tumor progression. However, how RNU12 affecting GC is not clear. qRT-PCR was utilized for determining the RNU12 expression in cell lines, 113 cases of paired gastric cancer (GC) and their adjacent normal gastric tissues. The biofunction alterations of RNU12 were assessed by its overexpression or knockdown in GC cells. MTT and cloning assay were assayed for the cell proliferation, the flow cytometry for the detection of cell cycle and the wound healing assay (WHA) and transwell invasion assay (TIA) for examining the migration and invasion of cells. The expressions of a set of genes related proliferation and migration were investigated with the Western Blotting (WB). RNA immunoprecipitation (RIP), biotinylated RNA pull-down and dual luciferase reporter tests were used to detect the interactions of RNU12 with miR-575/BLID. The in vivo proliferation and migration ability of RNU12 infected cells were determined in zebrafish system. This study revealed that RNU12 inhibited proliferation, invasion and metastasis by sponging of miR-575 and regulating the downstream BLID and modulated EMT of GC cells. The RNU12/miR-575/BLID axis is likely to be the prognosis biomarkers and drug targets of GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Animals , MicroRNAs/genetics , Neoplastic Processes , Stomach Neoplasms/genetics , Zebrafish/genetics
5.
Front Genet ; 14: 1067666, 2023.
Article in English | MEDLINE | ID: mdl-36816023

ABSTRACT

Introduction: Immune cell infiltration and metabolic reprogramming may have great impact on the tumorigenesis and progression of malignancies. The interaction between these two factors in cervical cancer remains to be clarified. Here we constructed a gene set containing immune and metabolism related genes and we applied this gene set to molecular subtyping of cervical cancer. Methods: Bulk sequencing and single-cell sequencing data were downloaded from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database respectively. Immune and metabolism related genes were collected from Immport and Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised consensus clustering was performed to identify the molecular subtypes. Cibersort was applied to evaluate the immune cells infiltration status. Differential expression analysis and Gene set enrichment analysis (GSEA) were performed to characterize the molecular pattern of different subtypes. Multivariate Cox regression analysis was used for prognosis prediction model construction and receiver operating characteristic (ROC) curve was used for performance evaluation. The hub genes in the model were verified in single-cell sequencing dataset and clinical specimens. In vitro experiments were performed to validate the findings in our research. Results: Three subtypes were identified with prognostic implications. C1 subgroup was in an immunosuppressive state with activation of mitochondrial cytochrome P450 metabolism, C2 had poor immune cells infiltration and was characterized by tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of aromatic amino acid synthesis. The area under the ROC curve of the constructed model was 0.8, which showed better performance than clinical features. IMPDH1 was found to be significantly upregulated in tumor tissue and it was demonstrated that IMPDH1 could be a novel therapeutic target in vitro. Discussion: In summary, our findings suggested novel molecular subtypes of cervical cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.

6.
Genes (Basel) ; 13(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35627232

ABSTRACT

Circular RNA (CircRNA) is related to tumor development. Nevertheless, the regulation and function of hsa_circ_0006692 and its interactions with miR-205-5p and CDK19 in the development of non-small-cell lung cancer (NSCLC) were un-explored. The correlations of expression levels of hsa_circ_0006692 in NSCLC specimens and cells with pathological characteristics were studied. The interactions of hsa_circ_0006692 with miR-205-5p and CDK19 were assessed with real-time PCR, RNA-binding protein immunoprecipitation (RIP), luciferase reporter, RNA pull-down, and fluorescence in situ hybridization (FISH). The roles of hsa_circ_0006692 on cell growth, invasion, and migration in vitro and metastasis in vivo were evaluated. Hsa_circ_0006692 was over-expressed in 60 cases of NSCLC specimens and cells, which was positively correlated with TNM stage, tumor size, and invasion of the lung basal layer. The results of the in vitro and in vivo studies revealed that the over-expression of hsa_circ_0006692 facilitated NSCLC cell growth, migration, and invasion, cell cycle arrest at the S phase, and the activation of BCL-2, CCND1, and PCNA. The results of the dual-luciferase reporter assay, RNA immunoprecipitation, and pull-down assays indicated that hsa_circ_0006692 sponged miR-205-5p, which targeted CDK19 and facilitated the malignant behaviors of lung cancer cells. Hsa_circ_0006692 modulated EMT of lung cancer cells via the stimulation of CDH1, CDH2, VIMENTIN, and MMP7. This study revealed that hsa_circ_0006692 promoted NSCLC progression via enhancing cell growth, invasion, and metastasis through sponging mir-205-5p, up-regulating the downstream oncogene CDK19 and modulating EMT of lung cancer cells. The circ-0006692/mir-205-5p/CDK19 axis might serve as a prognosis biomarker and target for drugs aimed against NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/genetics , Cyclin-Dependent Kinases/genetics , Humans , In Situ Hybridization, Fluorescence , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Front Oncol ; 11: 734694, 2021.
Article in English | MEDLINE | ID: mdl-34722282

ABSTRACT

SNHG8, a family member of small nucleolar RNA host genes (SNHG), has been reported to act as an oncogene in gastric carcinoma (GC). However, its biological function in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) remains unclear. This study investigated the role of SNHG8 in EBVaGC. Sixty-one cases of EBVaGC, 20 cases of non-EBV-infected gastric cancer (EBVnGC), and relative cell lines were studied for the expression of SNHG8 and BHRF1 (BCL2 homolog reading frame 1) encoded by EBV with Western blot and qRT-PCR assays. The relationship between the expression levels of SNHG8 and the clinical outcome in 61 EBVaGC cases was analyzed. Effects of overexpression or knockdown of BHRF1, SNHG8, or TRIM28 on cell proliferation, migration, invasion, and cell cycle and the related molecules were determined by several assays, including cell proliferation, colony assay, wound healing assay, transwell invasion assay, cell circle with flow cytometry, qRT-PCR, and Western blot for expression levels. The interactions among SNHG8, miR-512-5p, and TRIM28 were determined with Luciferase reporter assay, RNA immunoprecipitation (RIP), pull-down assays, and Western blot assay. The in vivo activity of SNHG8 was assessed with SNHG8 knockdown tumor xenografts in zebrafish. Results demonstrated that the following. (1) BHRF1 and SNHG8 were overexpressed in EBV-encoded RNA 1-positive EBVaGC tissues and cell lines. BHRF1 upregulated the expressions of SNHG8 and TRIM28 in AGS. (2) SNHG8 overexpression had a significant correlation with tumor size and vascular tumor thrombus. Patients with high SNHG8 expression had poorer overall survival (OS) compared to those with low SNHG8 expression. (3) SNHG8 overexpression promoted EBVaGC cell proliferation, migration, and invasion in vitro and in vivo, cell cycle arrested at the G2/M phase via the activation of BCL-2, CCND1, PCNA, PARP1, CDH1, CDH2 VIM, and Snail. (4) Results of dual-luciferase reporter assay, RNA immunoprecipitation, and pull-down assays indicated that SNHG8 sponged miR-512-5p, which targeted on TRIM28 and promoted cancer malignant behaviors of EBVaGC cells. Our data suggest that BHRF1 triggered the expression of SNHG8, which sponged miR-512-5p and upregulated TRIM28 and a set of effectors (such as BCL-2, CCND1, CDH1, CDH2 Snail, and VIM) to promote EBVaGC tumorigenesis and invasion. SNHG8 could be an independent prognostic factor for EBVaGC and sever as target for EBVaGC therapy.

8.
Oncogene ; 40(17): 3101-3117, 2021 04.
Article in English | MEDLINE | ID: mdl-33824475

ABSTRACT

Radiotherapy is essential to the treatment of nasopharyngeal carcinoma (NPC) and acquired or innate resistance to this therapeutic modality is a major clinical problem. However, the underlying molecular mechanisms in the radiation resistance in NPC are not fully understood. Here, we reanalyzed the microarray data from public databases and identified the protein tyrosine phosphatase receptor type D (PTPRD) as a candidate gene. We found that PTPRD was downregulated in clinical NPC tissues and NPC cell lines with its promoter hypermethylated. Functional assays revealed that PTPRD overexpression sensitized NPC to radiation in vitro and in vivo. Importantly, miR-454-3p directly targets PTPRD to inhibit its expression and biological effect. Interestingly, mechanistic analyses indicate that PTPRD directly dephosphorylates STAT3 to enhance Autophagy-Related 5 (ATG5) transcription, resulting in triggering radiation-induced autophagy. The immunohistochemical staining of 107 NPC revealed that low PTPRD and high p-STAT3 levels predicted poor clinical outcome. Overall, we showed that PTPRD promotes radiosensitivity by triggering radiation-induced autophagy via the dephosphorylation of STAT3, thus providing a potentially useful predictive biomarker for NPC radiosensitivity and drug target for NPC radiosensitization.


Subject(s)
Nasopharyngeal Carcinoma , STAT3 Transcription Factor , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs
9.
J Cell Physiol ; 236(9): 6457-6471, 2021 09.
Article in English | MEDLINE | ID: mdl-33694159

ABSTRACT

Radiotherapy plays an important role in the treatment of nasopharyngeal carcinoma (NPC), however, 20% of patients with NPC exhibit unusual radioresistance. Patients with radioresistance are at risk of recurrence, so it is imperative to explore the mechanism of resistance to radiotherapy. In the past, studies on the mechanism of radioresistance have been restricted to DNA damage and related cell cycle remodeling or apoptosis. So far, no studies have explored the relationship between radioresistance and metastasis. Through the analysis of clinical samples, we observed that the metastasis rate of recurrent NPC was much higher than that of primary patients. In vitro and in vivo experiments showed that NPC cells with acquired radioresistance exhibited a stronger ability for invasion and metastasis. Mechanistically, we found that the Epstein-Barr virus (EBV)-encoded miRNA BART8-3p was increased in patients with NPC, and its expression was positively correlated with adverse prognostic factors, such as radioresistance. Besides this, miR-BART8-3p promoted the epithelial-mesenchymal transition, invasion, and metastasis of radioresistant NPC cells by targeting and inhibiting their PAG1 host gene. These findings suggested a novel role for EBV-miR-BART8-3p in promoting NPC radioresistance-associated metastasis and highlighted its potential value as a prognostic indicator or therapeutic target.


Subject(s)
Herpesvirus 4, Human/physiology , MicroRNAs/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/virology , Radiation Tolerance , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition , HEK293 Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Nude , MicroRNAs/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Prognosis , Protein Binding , Treatment Outcome , Vimentin/metabolism
10.
Front Oncol ; 10: 585292, 2020.
Article in English | MEDLINE | ID: mdl-33194732

ABSTRACT

Cancer patients who initially benefit from Erlotinib, a drug targeting EGFR path, eventually develop resistance to the drug. The underlying mechanism is largely unknown. This study investigated the role of ARL4C in Erlotinib resistance development of NSCLC. qRT-PCR and Western blotting were performed to analyze the expression of mRNA and protein of ARL4C in two NSCLC cell lines (HCC827 and PC-9). Several assays (MTS, colony formation, transwell migration, luciferase reporter, and chromatin-immunoprecipitation) were used to explore the role of ARL4C in biofunctional changes of Erlotinib-resistant cells and their associations with Jak2/Stat 5/ß-catenin signaling. Results demonstrated that (1) long-term use of Erlotinib resulted in downregulation of ARL4C; (2) overexpression of ARL4C could regain the sensitivity to Erlotinib in the drug-resistant HCC827/ER cells, while downregulation of ARL4C increased HCC827, and PC-9 cells' resistance to the drug; (3) Erlotinib-induced downregulation of ARL4C resulted in phosphorylation of Jak2/Stat5 and upregulation of ß-catenin and their related molecules Axin2, CD44, Ccnd1, Lgr-5, and MMP7, which promoted the malignant behaviors of Erlotinib-resistant cells; (4) chromatin immunoprecipitation and luciferase reporter assay revealed that Stat5 could bind to ß-catenin promoter to upregulate molecules to maintain the malignant behaviors, which might count for how Erlotinib-resistant cell survived while EGFR path was blocked; (5) the expression of ARL4C was not associated with known EGFR gene mutations in both Erlotinib-resistant cells and NSCLC tissues. Our data suggest that Erlotinib resistance of NSCLCs is associated with downregulation of ARL4C via affecting Jak/Stat/ß-catenin signaling. ARL4C could serve as a biomarker to predict the effectiveness of TKI targeting therapy and a potential therapeutic target for overcoming Erlotinib resistance in NSCLC.

11.
Onco Targets Ther ; 13: 10983-10994, 2020.
Article in English | MEDLINE | ID: mdl-33149613

ABSTRACT

BACKGROUND: miR-214 has been reported to contribute to erlotinib resistance in non-small-cell lung cancer (NSCLC) through targeting LHX6; however, the molecular mechanisms underlying the involvement of LHX6 in mediating the resistance to EGFR-TKIs in erlotinib-resistant NSCLC HCC827 (HCC827/ER) cells remain unknown. This study aimed to investigate the mechanisms responsible for the contribution of LHX6 to EGFR-TKIs resistance in HCC827/ER cells. MATERIALS AND METHODS: HCC827/ER cells were generated by erlotinib treatment at a dose-escalation scheme. LHX6 knockout or overexpression was modeled in HCC827 and HCC827/ER cells, and then erlotinib IC50 values were measured. The cell migration ability was evaluated using a transwell migration assay, and the TCF/LEF luciferase activity was assessed with a TCF/LEF reporter luciferase assay. LHX6, ß-catenin and Cyclin D1 expression was quantified using qPCR and Western blotting assays. In addition, the LHX6 expression was detected in lung cancer and peri-cancer specimens using immunohistochemical staining, and the associations of LHX expression with the clinicopathological characteristics of lung cancer were evaluated. RESULTS: Lower LHX6 expression was detected in HCC827/ER cells than in HCC827 cells (P < 0.0001), while higher ß-catenin expression was seen in HCC827/ER cells than in HCC827 cells (P < 0.001). LHX6 knockout increased erlotinib resistance and cell migration ability in HCC827 cells, and LHX6 overexpression inhibited erlotinib resistance and cell migration ability in HCC827/ER cells. In addition, LHX6 mediated erlotinib resistance and cell migration ability in HCC827/ER cells via the Wnt/ß-catenin pathway. Immunohistochemical staining showed lower LHX6 expression in lung cancer specimens relative to peri-cancer specimens, and there were no associations of LHX6 expression with pathologic stage, gender, age or tumor size in lung cancer patients (P > 0.05). CONCLUSION: LHX6 down-regulation may induce EGFR-TKIs resistance and increase the migration ability of HCC827/ER cells via activation of the Wnt/ß-catenin pathway.

12.
Cancer Manag Res ; 12: 10639-10649, 2020.
Article in English | MEDLINE | ID: mdl-33149672

ABSTRACT

PURPOSE: Nasopharyngeal carcinoma (NPC) is among the most common malignancies derived from the epithelium of the nasopharynx. To date, the regulatory networks involved in NPC have not been fully identified. Previous studies revealed multiple loss-of-function mutations in NPC and specifically in cylindromatosis lysine 63 deubiquitinase (CYLD); however, the exact role of CYLD in NPC progression and its potential mechanism remains unclear. METHODS: We performed immunohistochemical (IHC) staining and real-time quantitative polymerase chain reaction (qPCR) to measure CYLD expression in NPC tissues, and Western blot was conducted to determine CYLD levels in NPC cell lines. Cell proliferation was detected by CCK8 assay and colony formation analysis, and apoptosis was determined by Annexin V/propidium iodide staining. Potential targets of CYLD were verified by co-immunoprecipitation and mass spectrometry. Xenograft assay was conducted to confirm the role of CYLD in vivo. RESULTS: We found that CYLD levels were significantly decreased in both NPC tissues and cell lines, and that CYLD overexpression inhibited NPC cell proliferation and promoted apoptosis. Additionally, we revealed that CYLD bound and upregulated N-Myc downstream regulated 1 (NDRG1), and that silencing NDRG1 abolished the tumor-suppressor effect of CYLD on NPC cells. Furthermore, CYLD suppressed tumor growth in xenograft mice models. CONCLUSION: These results suggest CYLD as a tumor suppressor, potential biomarker for diagnosing NPC, and therapeutic target.

13.
Transl Cancer Res ; 9(4): 2542-2555, 2020 Apr.
Article in English | MEDLINE | ID: mdl-35117614

ABSTRACT

BACKGROUND: Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard treatment for advanced non-small cell lung cancer (NSCLC). However, the emergence of EGFR-TKIs resistance poses a big challenge to the treatment. Although several resistant mutations have been identified, our understanding of the mechanisms underlying acquired EGFR-TKIs resistance remains incomplete. This study aimed to identify novel mutations and mechanisms that could contribute to acquired EGFR-TKIs resistance in EGFR mutated NSCLC cells. METHODS: Erlotinib resistant cells (HCC827/ER cells) were generated from the EGFR mutated NSCLC cell line HCC827, and whole-exome sequencing was performed to identify gene mutations in HCC827/ER cells. The Spred-3 expression was determined using quantitative real-time PCR (qPCR) and Western blotting assays, and the p-p44/42, p44/42, p-Akt and Akt expression was determined using Western blotting. The half maximal inhibitory concentration (IC50 value) was measured using the MTS assay, and cell migration was detected with a Transwell migration assay. RESULTS: Whole-exome sequencing identified deletion mutation c.120delG at exon 1 of the Spred-3 gene, resulting in a p.E40fs change in amino acid, in HCC827/ER cells. The Spred-3 expression was much reduced in HCC827/ER cells as compared to the HCC827 cells at both mRNA and protein levels. Knocking out Spred-3 in HCC827 cells using CRISPR/Cas9 increased erlotinib resistance and cell migration, while overexpressing Spred-3 in HCC827/ER cells using a cDNA construct reduced erlotinib resistance and cell migration. We also showed the Ras/Raf/MAPK pathway was activated in HCC827/ER cells, and inhibiting ERK1/2 in HCC827/Spred-3-sgRNA cells resulted in reduced erlotinib resistance and cell migration. CONCLUSIONS: The results of this study indicate that a loss-of-function mutation in Spred-3 resulted in activation of the Ras/Raf/MAPK pathway that confers resistance to EGFR-TKIs in NSCLC cells harboring an EGFR mutation.

14.
Cancer Manag Res ; 11: 6855-6869, 2019.
Article in English | MEDLINE | ID: mdl-31440083

ABSTRACT

BACKGROUND: Inhibitor of DNA binding 1 (Id1) is upregulated in multiple cancers, and Id1overexpression correlates with cancer aggressiveness and poor clinical outcomes in cancer patients. However, its roles in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) are still elusive. PURPOSE: This study aimed to examine the role of Id1 on the mediation of CRC stemness and explore the underlying mechanisms. METHODS: Id1 and CD133 expression was detected by qPCR assay and immunohistochemistry (IHC) in normal mucosal and primary colorectal cancer (CRC) specimens. Id1 was stably knocked down (KD) in human CRC cell lines. Spheres forming assay and tumorigenic assay were performed to evaluate self-renewal capacity and tumor initiation. Expression of CSC- and EMT-related markers and TCF/LEF activity were assessed in HCT116 cells after Id1 KD. RESULTS: qPCR assay showed higher Id1 and CD133 expression in CRC specimens than in normal mucosal specimens (P<0.05). IHC detected high cytoplasmic Id1 expression in 35 CRC specimens (46.7%), and high CD133 expression in 22 CRC specimens (29.3%) and negative expression in 18 normal mucosal specimens. High Id1 expression positively correlated with poor differentiation (P=0.034), and CD133 expression correlated with T category in CRC patients (P=0.002). Spearman correlation analysis revealed a positive correlation between Id1 and CD133 expression in CRC patients (P<0.05). Id1 KD resulted in suppression of proliferation, cell-colony formation, self-renewal capability and CSC-like features in HCT116 cells, and impaired the tumor-initiating capability in CRC cells. In addition, Id1 maintained the stemness of CRC cells via the Id1-c-Myc-PLAC8 axis through activating the Wnt/ß-catenin and Shh signaling pathways. CONCLUSIONS: Id1 expression significantly correlates with CD133 expression in CRC patients, and Id1 KD impairs CSC-like capacity and reverses EMT traits, partially via the Wnt/ß-catenin signaling. Id1 may be a promising therapeutic target against colon CSCs.

15.
Sci Rep ; 7(1): 781, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28396596

ABSTRACT

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are standard treatments for advanced non-small-cell lung cancer (NSCLC) patients. However, acquired resistance to EGFR-TKIs is widely detected across the world, and the exact mechanisms have not been fully demonstrated until now. This study aimed to examine the role of miR-214 in the acquired resistance to erlotinib in NSCLC, and elucidate the underlying mechanisms. qRT-PCR assay detected higher miR-214 expression in the plasma of NSCLC patients with acquired EGFR-TKI resistance than prior to EGFR-TKI therapy, and in the generated erlotinib-resistant HCC827 (HCC827/ER) cells than in HCC827 cells. Bioinformatics analysis and dual-luciferase reporter assay indentified LHX6 as a direct target gene of miR-214, and LHX6 expression was detected to be down-regulated in erlotinib-resistant HCC827 cells. Transwell invasion assay revealed that overexpressing LHX6 reversed the increase in the invasive ability of HCC827 cells induced by miR-214 overexpression, and the CRISPR-Cas9 system-mediated LHX6 knockdown reversed the reduction in the invasion of erlotinib-resistant HCC827 cells caused by miR-214 down-regulation. The results of the present study demonstrate that down-regulation of miR-214 may reverse acquired resistance to erlotinib in NSCLC through mediating its direct target gene LHX6 expression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Erlotinib Hydrochloride/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , LIM-Homeodomain Proteins/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , RNA Interference , Transcription Factors/genetics , 3' Untranslated Regions , Antineoplastic Agents/pharmacology , Cell Line, Tumor , ErbB Receptors/genetics , Humans , Protein Kinase Inhibitors/pharmacology
16.
Int J Oncol ; 45(3): 995-1010, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24968890

ABSTRACT

Upregulation of nuclear factor-κB (NF-κB) in colorectal carcinoma (CRC) accelerates tumor growth, whereas, irinotecan (CPT-11)-induced NF-κB activation reduces chemosensitivity and weakens the anti-colorectal cancer function itself, while proteasome inhibitors can inhibit NF-κB and improve the effect of chemotherapy. Carfilzomib (CFZ) is a novel proteasome inhibitor that has been recently approved by the FDA and is in clinical use for the treatment of multiple myeloma, but little is known about its activity against CRC. The aim of the present study was to explore whether CFZ alone or in combination with CPT-11 is effective in CRC treatment. We evaluated the novel therapeutic ability and mechanism of action of CFZ in CRC in vitro and in vivo. SW620 cells were incubated with CFZ alone or in combination with CPT-11. Cell proliferation was assessed by WST-1 and clonogenic assays, the cytotoxic interaction was assessed with a combination index (CI). Cell cycle progression was analysed with flow cytometry. Cell apoptosis was evaluated by detecting the Annexin V/propidium iodide (PI) ratio, caspase 3 and CD95 expression, and with TUNEL staining. Cell migration and invasion was determined with a wound-healing assay and a Transwell matrix penetration assay. A CRC xenograft model was established to monitor tumor growth. EMSA was used to analyse NF-κB activation and western blot analysis was used to detect the protein levels of related signaling factors. CFZ significantly inhibited the growth of SW620 cells, and had synergistic inhibitory effects with CPT-11 on survival and colony formation; possibly by inhibition of NF-κB activation, MEK/ERK and PI3K/AKT pathway factor dephosphorylation and survivin downregulation. Co-administration of CFZ and CPT-11 induced G2/M arrest, increased p21WAF1/CIP, and decreased mutant p53 and cdc25c expression. Induction of apoptosis was accompanied by marked increases in PARP cleavage, caspase 3 activation, an increase of CD95 and p-p38, and ATF3 activation. Combination treatment lowered the invasive and migration ability of SW620 cells, reduced MMP and increased TIMP protein expression. Finally, co-administration of CFZ and CPT-11 suppressed tumor growth and increased apoptosis compared with single-agent treatment in SW620 xenograft models correlated with NF-κB downregulation. Carfilzomib alone or in combination with CPT-11 is effective against colorectal cancer through inhibition of multiple mechanisms related to NF-κB, and could be a potential novel therapy for CRC.


Subject(s)
Antineoplastic Agents/administration & dosage , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Oligopeptides/administration & dosage , Protein Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Colorectal Neoplasms/pathology , Drug Synergism , Female , Gene Expression Regulation, Neoplastic , Humans , In Vitro Techniques , Irinotecan , Mice , Mice, Inbred BALB C , Neoplasms, Experimental , Oligopeptides/therapeutic use , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , NF-kappaB-Inducing Kinase
17.
Oncol Rep ; 32(1): 79-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24804700

ABSTRACT

Inhibitor of DNA-binding protein 1 (ID1) is commonly abnormally overexpressed in colorectal cancer (CRC); yet, the functional significance of ID1 in the growth and invasive properties of CRC cells remains largely unclear. The present study investigated the effects of ID1 downregulation on the cell growth and metastatic features of CRC. Using lentiviral shRNA infection, stable ID1-knockdown (KD) HCT116 and SW620 cells, human metastatic CRC cell lines, were created. In vitro, the migration/invasion capacity of the ID1-KD CRC cells was assessed by a wound healing assay. The activities of MMP2 and MMP-9 were measured by gelatin zymography. The expression of CXC chemokine receptor 4 (CXCR4), PCNA and survivin were determined by immunoblot analysis and qRT-PCR. The effects of ID1 knockdown on tumor growth and hepatic metastasis were demonstrated by a xenograft study in mice. The results showed evident decreases in proliferation, migration and invasion and an increased apoptosis rate in the ID1-KD CRC cells. Similarly, ID1 knockdown significantly decreased mRNA and protein levels of PCNA, survivin, CXCR4, MMP2 and MMP9. Overexpression of CXCR4 antagonized the negative effect on the migration and invasion abilities of the ID1-KD cells. As compared with the control, ID1 knockdown prevented tumor growth and profoundly suppressed hepatic metastasis in vivo. The present study demonstrated the significance of ID1 in colon cancer progression, and its effect on tumor invasiveness and metastatic properties may be partly dependent on CXCR4.


Subject(s)
Colorectal Neoplasms/pathology , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Liver Neoplasms/secondary , Receptors, CXCR4/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HCT116 Cells , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Nude , Neoplasms, Experimental , Receptors, CXCR4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...