Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PhytoKeys ; 241: 169-176, 2024.
Article in English | MEDLINE | ID: mdl-38715683

ABSTRACT

While reliance on morphology has been at the expense of clearly distinguishing gracilarioid species, molecular data have proven to be more reliable in discriminating between taxa. Gracilariaphuquocensis was originally described, based on materials collected from Vietnam. Since it was described in 2020, there have been no further reports of this species. Meanwhile, a question has been raised as to whether the identity of a rhodophyte gracilarioid alga collected from the Philippines that has been referred to as an unidentified species of Gracilaria, could be G.phuquocensis. Based on comparative morpho-anatomical features and a molecular phylogeny based on rbcL gene sequences, establishing the identity of the Philippine material has led to the finding of the new record of G.phuquocensis outside its type locality. In addition to the discovery of G.phuquocensis in the Philippines, the species here is also identified as a newly-reported host for the adelphoparasite resembling Gracilariababae.

2.
Sci Rep ; 12(1): 14609, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028749

ABSTRACT

The complex geographic and temporal origins of chicken domestication have attracted wide interest in molecular phylogeny and phylogeographic studies as they continue to be debated up to this day. In particular, the population dynamics and lineage-specific divergence time estimates of chickens in Southeast Asia (SEA) and the Pacific region are not well studied. Here, we analyzed 519 complete mitochondrial DNA control region sequences and identified 133 haplotypes with 70 variable sites. We documented 82.7% geographically unique haplotypes distributed across major haplogroups except for haplogroup C, suggesting high polymorphism among studied individuals. Mainland SEA (MSEA) chickens have higher overall genetic diversity than island SEA (ISEA) chickens. Phylogenetic trees and median-joining network revealed evidence of a new divergent matrilineage (i.e., haplogroup V) as a sister-clade of haplogroup C. The maximum clade credibility tree estimated the earlier coalescence age of ancestral D-lineage (i.e., sub-haplogroup D2) of continental chickens (3.7 kya; 95% HPD 1985-4835 years) while island populations diverged later at 2.1 kya (95% HPD 1467-2815 years). This evidence of earlier coalescence age of haplogroup D ancestral matriline exemplified dispersal patterns to the ISEA, and thereafter the island clade diversified as a distinct group.


Subject(s)
Chickens , DNA, Mitochondrial , Animals , Genetic Variation , Haplotypes , Phylogeny , Phylogeography , Polymorphism, Genetic , Population Dynamics
3.
Arab J Chem ; 14(11): 103393, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34909061

ABSTRACT

The respiratory infection COVID-19 caused by the virus SARS CoV-2 has continued to be a major health problem worldwide and has caused more than a million mortalities. Even if the development of COVID-19 vaccines has shown much progress, efforts to find novel, natural anti-viral drugs should be pursued. Halymenia durvillei is a marine red alga widely distributed around Southeast Asia. This study aimed to develop new anti SARS CoV-2 compounds from ethanolic and ethyl acetate extracts of H. durvillei via a computational approach, focusing onthe inhibitory action against the main protease (3CL-Mpro). In this study, 37 compounds were extracted and identified by GC-MS analysis. The potentials of compounds 1-2 tetradecandiol and E,E,Z-1,3,12-nonadecatriene-5,14-diol were identified for therapeutic purposes based on our pharmacophore study, while cholest-5-En-3-Ol (3.Beta.)- had a high fitness score in molecular docking studies both in monomer and dimer state compared to the N3 inhibitor and remdesivir affinity scores. As these compounds show competitive affinity scores against the 3CL-Mpro, these natural compounds may be effective for the treatment of COVID-19 infection. The ADME and pharmacokinetic studies should also be employed to assess the ability of the natural compounds as oral drugs. These promising results have shown the potentials of H. durvillei as an alternative drug in addressing COVID-19 infection. Accordingly, further studies should explore the effectiveness of these active compounds.

4.
Front Genet ; 12: 823364, 2021.
Article in English | MEDLINE | ID: mdl-35145546

ABSTRACT

The Philippines is a mega-diverse country that lies at the crossroads of past human migrations in the Asia-Pacific region and is believed to have never been connected to the Asian continent, even during the major sea-level subsidence of the Quaternary. As a result, the history of pig dispersal in the Philippines remains controversial, due to limited molecular studies and absence of archaeological evidence of pig domestication. This study provides the first comprehensive analysis of 184 complete mitochondrial DNA D-loop region from Philippine pigs to elucidate their early dispersal history by performing a phylogenetic comparison with wild boars and domestic pigs worldwide. The results showed a demographic signal of the ancestry of Philippine pigs that had a close genetic relationship with those from the mainland Southeast Asia and Northeast Asia, suggesting gene flow that may have resulted from human migration and trade. Here we have suggested two possible dispersal routes. One parallels the Neolithic expansion in Island Southeast Asia and Oceania via Northeast Asia, the other from the mainland Southeast Asia, into Palawan and Sulu Archipelago as early as prehistoric times via the Sundaic Region. Despite geographic barriers to migration, numerous genetic lineages have persisted across the Philippine islands, even justifying the recognition of a Philippine Lanyu subclade. The prehistoric population history suggests a demographic expansion that coincided with the interglacial periods of the Pleistocene and may have spread from the southern regions into the eastern and central regions of the Philippines. The intriguing signal of discrepancy discovered between the ancestral pattern and distribution range of the numerous endemic Philippine wild pigs opens a challenging new approach to illuminate complexity among these animals. Our study has contributed significantly towards completing the sparse molecular studies on Philippine pigs, an essential for creating win-win conservation measures.

5.
Mar Environ Res ; 151: 104745, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31229278

ABSTRACT

Allelopathy has been proposed as a key mechanism mediating coral-algal interactions; however, few studies have tested macroalgal allelochemicals on coral larvae. In this study, we examined the effects of crude extracts from four macroalgal species on Pocillopora acuta larvae under different exposure conditions. Larval mortality increased considerably with increasing concentrations of Bryopsis sp., Endosiphonia horrida, and Lobophora sp. extracts. Increasing E. horrida and Lobophora sp. extract concentrations also substantially decreased larval settlement. No detectable effects on larvae were observed in Hypnea pannosa extracts. Further, while larval mortality increased with exposure duration to Lobophora sp. extracts, larval settlement was enhanced at 12 h exposure, but reduced at shorter and longer durations. Our results emphasize that macroalgal chemical effects are highly dependent on macroalgal species and exposure conditions. On reefs dominated by allelopathic macroalgae, the survivorship and settlement of coral larvae are potentially constrained, thereby limiting the recovery of degraded reefs.


Subject(s)
Allelopathy , Anthozoa , Seaweed , Animals , Anthozoa/genetics , Coral Reefs , Larva
6.
PLoS One ; 9(12): e114321, 2014.
Article in English | MEDLINE | ID: mdl-25493938

ABSTRACT

The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.


Subject(s)
Acclimatization/physiology , Anthozoa/physiology , Anthozoa/parasitology , Coral Reefs , Dinoflagellida/metabolism , Animals , Climate Change , Ecosystem , Hot Temperature , Photosynthesis , Symbiosis
7.
Parasitol Int ; 62(6): 586-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23831892

ABSTRACT

A green spotted Japanese sillago (Sillago japonica) was caught by a fisherman and brought to the laboratory for pathological inspection. The green spots were abundant on the lateral line and more extensively so within the mouth cavity. In both sites, green spots were embedded within the fish flesh and formed 2-3mm dome-shaped colonies. SEM revealed these colonies to harbor numerous unknown cells with small, surface warts (ornamentations). Molecular analysis showed the cells were Desmodesmus (D. komarekii), a common freshwater coccoid green alga found in ponds and rivers worldwide. It is uncertain how the host fish came to be infected with the alga which was not merely attached externally but embedded within the flesh and inside the mouth cavity. This is the first case of parasitic form of coccoid green algae in marine fish and provides new insights into the variable nature of green algae.


Subject(s)
Chlorophyta/classification , Fish Diseases/parasitology , Animals , Base Sequence , Chlorophyta/cytology , Chlorophyta/genetics , DNA, Algal/chemistry , DNA, Algal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Fish Diseases/pathology , Fishes , Japan , Lateral Line System/parasitology , Molecular Sequence Data , Mouth/parasitology , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
8.
Bot Stud ; 54(1): 1, 2013 Dec.
Article in English | MEDLINE | ID: mdl-28510896

ABSTRACT

BACKGROUND: Members of the calcified red algal genus, Galaxaura, are distributed predominantly in warm temperate, subtropical, and tropical regions worldwide. The capacity of these algae to form calcified thalli could play a critical role in the carbon cycle of these ecosystems. Previous studies have suggested that the reported species diversity of Galaxaura may be exaggerated due to a lack of knowledge regarding external morphological differences between gametophytic and tetrasporophytic plants (or among different life stages) of a single species. RESULTS: To examine this issue, this study collected specimens of two morphologically distinct Galaxaura from Taiwan and the Philippines. These specimens were initially identified as two species (G. pacifica Tanaka and G. filamentosa Chou ex Taylor) based on their morphological features. Our molecular analyses, however, unexpectedly showed that these two specimens shared 100% identical rbc L sequences, indicating that they represented a single species comprising two distinct external morphologies. Furthermore, our extensive observations and molecular analyses on several specimens from different locations in southern Taiwan has revealed that these morphological differences could be due to seasonal variation. CONCLUSIONS: This study proposes that G. "filamentosa" from the Philippines could represent the remnants of the lower villous part of older gametophytic plants of G. pacifica after senescence of the upper smooth part of the thallus. As such we propose that these two previously distinct algal species from the northwest Pacific Ocean as a single species, G. pacifica. This study shows that the biodiversity of the calcified red algae Galaxaura could be overestimated without the assistance of molecular tools. Additionally, this study provides insights into the biodiversity and unique biology of the calcified red algae Galaxaura.

SELECTION OF CITATIONS
SEARCH DETAIL