Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Poult Sci ; 103(8): 103898, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38936216

ABSTRACT

Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.

2.
Poult Sci ; 102(12): 103105, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852050

ABSTRACT

In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.


Subject(s)
Chickens , MicroRNAs , Chick Embryo , Animals , Chickens/genetics , Chickens/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Gene Expression Profiling/veterinary , Embryonic Development/genetics
3.
Poult Sci ; 102(3): 102365, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36610104

ABSTRACT

Intestinal damage from the duck plague virus (DPV) infection affects intestinal inflammation factors expression and barrier dysfunction. Here we report findings from the pathogenicity of the intestinal tract, intestinal morphological, intestinal permeability, inflammatory cytokines, and tight junction gene expression in 72 two-wk-old Muscovy ducks exposed to DPV. The characterization of intestinal metabolites and their classification were examined using 16-sequencing technology. The primary outcomes of the study evaluated the correlation between intestinal microbiota characteristics and the degree of infected tissue. The secondary outcomes were to determine whether the biosignatures that defined the microbiota were positively or negatively correlated with viral infection. The tissue was infected accompanied a mild damage of liver and spleen, and severe intestinal bleeding. Two inoculation routes were constructed with susceptible animals to assess the pathogenicity of the DPV in order to enrich the status of infection in Muscovy ducks. High levels of virus titer from Muscovy ducks were found being in the intestine. The expression of INF-α and IL-ß with viral infection increased at 4, and 6 dpi, respectively, after detecting of the inflammatory factor and barrier function genes. At 4 and 6 dpi, barrier function gene of ZO-1 and Occludin reduced. The severity of viral infection was significantly correlated with the characteristics of the intestinal microbiota. Ducks infected with the DPV had an increase in the phylum Firmicutes, a decrease in the phylum Actinobacteriota, and differential enrichment with the genus Bacteroides, Tyzzerella, Enterococcus, and Escherchia-Shigella, while the genus Rothia, Streptococcus, and Ralstonia were differentially enriched in the control group. The findings from the current study demonstrated that DPV infection leads to an imbalance of the intestinal microbiota and disruption of the microbial homeostasis in the intestinal tissue in ducks, which might be one of the mechanisms whereby DPV infection might be established in Muscovy ducks. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activity monitoring also showed that viral infection reduced these activities. These findings imply that changes in intestinal microbiota, intestinal barrier gene expression, and inflammatory factor are related to viral infection. When taken as a whole, this work provides fresh perspectives on the characteristics of intestinal microbiota and the infection damage caused by the DPV.


Subject(s)
Gastrointestinal Microbiome , Poultry Diseases , Animals , Ducks , Chickens
4.
BMC Genomics ; 23(1): 825, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36513979

ABSTRACT

BACKGROUND: The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS: In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION: Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.


Subject(s)
Chickens , Transcription Factors , Chick Embryo , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Chickens/genetics , Chickens/metabolism , Transcriptome , Gene Expression Profiling , Embryonic Development/genetics
5.
Front Microbiol ; 13: 979368, 2022.
Article in English | MEDLINE | ID: mdl-36439841

ABSTRACT

In the second half of 2021, a highly pathogenic case occurred in a mixed chicken and duck family farm in Guangdong, China. After the duck flocks were immunized with live attenuated duck enteritis virus vaccine (live attenuated DEV vaccine), the chickens of the same farm showed clinical symptoms similar to duck enteritis, such as pericardial effusion, hepatic hemorrhagic spots, kidney enlargement, and intestinal bleeding, with mass mortality. The infection model of target animal tested, as well as the non-target species, was established according to the risk of live attenuated DEV vaccine and transmission in chickens. Live attenuated DEV vaccine was initially replicated in host animals, released the virus, and effectively colonized in the common environment, according to birds challenged experiments. There was evidence to suggest the mode of transmission of duck enteritis virus, and horizontal transmission is the main route of DEV transmission. In addition, high levels of virus titer were detected in chicken embryos and different tissues of SPF chickens. Different degrees of pathological damage occurred in the tissue of chickens. After the SPF chickens were inoculated with live attenuated DEV vaccine, different degrees of virulence were exhibited, pointing to a potential risk to other domestic bird species.

6.
Virol Sin ; 37(2): 284-294, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35527223

ABSTRACT

Subgroup J avian leukosis virus (ALV-J) is a highly oncogenic retrovirus that has been devastating the global poultry industry since the late 1990s. The major infection model of ALV-J is vertical transmission, which is responsible for the congenital infection of progeny from generation to generation. Increasing evidence has suggested that extracellular vesicles (EVs) derived from virus-infected cells or biological fluids have been thought to be vehicles of transmission for viruses. However, the role of EVs in infection and transmission of ALV-J remains obscure. In the present study, semen extracellular vesicles (SE) were isolated and purified from ALV-J-infected rooster seminal plasma (SE-ALV-J), which was shown to contain ALV-J genomic RNA and partial viral proteins, as determined by RNA sequencing, reverse transcription-quantitative PCR and Western blotting. Furthermore, SE-ALV-J was proved to be able to transmit ALV-J infection to host cells and establish productive infection. More importantly, artificial insemination experiments showed that SE-ALV-J transmitted ALV-J infection to SPF hens, and subsequently mediated vertical transmission of ALV-J from the SPF hens to the progeny chicks. Taken together, the results of the present study suggested that ALV-J utilized host semen extracellular vesicles as a novel means for vertical transmission, enhancing our understanding on mechanisms underlying ALV-J transmission.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Extracellular Vesicles , Poultry Diseases , Animals , Avian Leukosis/genetics , Avian Leukosis Virus/genetics , Chickens , Female , Male , Semen
7.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: mdl-35458535

ABSTRACT

MicroRNAs (miRNAs) are a group of regulatory noncoding RNAs, serving as major regulators with a sequence-specific manner in multifarious biological processes. Although a series of viral families have been proved to encode miRNAs, few reports were available regarding the function of ALV-J-encoded miRNA. Here, we reported a novel miRNA (designated ALV-miRNA-p19-01) in ALV-J-infected DF-1 cells. We found that ALV-miRNA-p19-01 is encoded by the genome of the ALV-J SCAU1903 strain (located at nucleotides site 779 to 801) in a classic miRNA biogenesis manner. The transfection of DF-1 cells with ALV-miRNA-p19-01 enhanced ALV-J replication, while the blockage of ALV-miRNA-p19-01 suppressed ALV-J replication. Furthermore, our data showed that ALV-miRNA-p19-01 promotes ALV-J replication by directly targeting the cellular gene dual specificity phosphatase 6 through regulating ERK2 activity.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Dual Specificity Phosphatase 6 , MicroRNAs , Animals , Avian Leukosis Virus/physiology , Chickens/genetics , MicroRNAs/genetics , Virus Replication
8.
Vet Microbiol ; 264: 109293, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34883334

ABSTRACT

Control of ALV-J in breed of chicken is still a serious issue that need more attention to be paid. Vertical transmission of ALV-J often give rise to more adverse pathogenicity. However, the way to elimination of ALV-J underlying vertical transmission remains not-well understood. In addition, effective vaccines or drugs have not been developed to prevent and control the transmission of ALV-J so far. CD81, a member of the tetraspanins superfamily, plays important roles in regulating membrane proteins, facilitating cells adhesion or fusion, and also participates in viral infection. The purpose of this study was to investigate whether antibodies against certain tetraspanins affect infection of ALV-J. Here, we showed that anti-CD81 antibody could inhibit viral RNA and protein level. We also found that anti-CD81 antibody interacts with viral protein p27, p32 and gp37. Moreover, treatment with antibody to CD81 can effectively prevent the vertical transmission of ALV-J in animal model. Collectively, current study provides new avenues for the control of ALV-J transmission.


Subject(s)
Antibodies , Avian Leukosis Virus , Avian Leukosis , Poultry Diseases , Animals , Antibodies/metabolism , Avian Leukosis/prevention & control , Avian Leukosis/transmission , Avian Leukosis/virology , Avian Leukosis Virus/classification , Chickens , Infectious Disease Transmission, Vertical , Poultry Diseases/prevention & control , Poultry Diseases/transmission , Poultry Diseases/virology , Tetraspanin 28/immunology
9.
PeerJ ; 9: e10905, 2021.
Article in English | MEDLINE | ID: mdl-33777516

ABSTRACT

Both canopy gaps (CG) and arbuscular mycorrhizal fungi (AMF) play key roles in seedling establishment and increasing species diversity in forests. The response of AMF to canopy gaps is poorly understood. To assess the long-term effects of canopy gaps on soil AMF community, we sampled soil from plots in a 50-year Cryptomeria japonica (L.f.) D. Don. plantation, located in Lushan Mountain, subtropical China. We analyzed the AMF community, identified through 454 pyrosequencing, in soil and edaphic characteristics. Both richness and diversity of AMF in CG decreased significantly compared to the closed canopy (CC). The differences of the AMF community composition between CG and CC was also significant. The sharp response of the AMF community appears to be largely driven by vegetation transformation. Soil nutrient content also influenced some taxa, e.g., the low availability of phosphorus increased the abundance of Acaulospora. These results demonstrated that the formation of canopy gaps can depress AMF richness and alter the AMF community, which supported the plant investment hypothesis and accentuated the vital role of AMF-plant symbioses in forest management.

10.
Virus Res ; 286: 198083, 2020 09.
Article in English | MEDLINE | ID: mdl-32621842

ABSTRACT

MicroRNAs(miRNAs) have been reported to regulate gene expression in many processes. MiRNA in extracellular vesicles (EVs) also have been widely investigated, while there is no studies of miRNAs in seminal EVs. Subgroup J of Avian leukosis virus (ALV-J) can be transmitted vertically, but the mechanism of it is not clear enough. This study was to examine the miRNA expression profile in seminal EVs and inquire into the relation between it and the vertical transmission by performing gene ontology (GO) and pathway enrichment analysis. Here, we first isolated and characterized seminal EVs by Nanoparticle Tracking Analysis、Western Blot and Transmission electron microscopy experiments. By deep sequencing of each EVs miRNA library, 9 typical differentially expressed miRNA, including 6 up-regulated and 3 down-regulated, were identified. Gene target prediction, GO annotation and KEGG pathway enrichment analysis showed possible function associated with these miRNAs. Overall, these findings will increase our understanding of the content and composition of miRNA in seminal EVs and provide new insights into the important role of the seminal EVs miRNAs regulation in ALV-J transmission.


Subject(s)
Avian Leukosis/virology , Extracellular Vesicles/virology , Gene Expression Profiling , MicroRNAs/genetics , Semen/virology , Animals , Avian Leukosis Virus , Chickens/virology , Down-Regulation , Male , Poultry Diseases/virology , Sequence Analysis, DNA , Up-Regulation
11.
Transbound Emerg Dis ; 66(5): 2002-2010, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31127977

ABSTRACT

Chlamydophila psittaci (C. psittaci) is an avian pathogen associated with systemic wasting disease in birds, as well as a public health risk. Although duck-related cases of psittacosis have been reported, the pathogenicity and shedding status of C. psittaci in ducks are unclear. In this study, we reported that C. psittaci (genotype A) is responsible for a disease outbreak characterized by poor laying performance and severe lesions in multiple organs of ducks. Oral administration of antibiotic, doxycycline, was found to effectively control the C. psittaci infection in laying ducks. Collectively, our new findings provide evidence that C. psittaci was the major pathogen responsible for the outbreak of this disease in ducks. In order to reduce economic losses incurred by this disease, effective control measures must be taken to prevent infection in laying duck farms.


Subject(s)
Chlamydophila psittaci/physiology , Ducks , Poultry Diseases/pathology , Psittacosis/pathology , Animals , Anti-Bacterial Agents/administration & dosage , China , Chlamydophila psittaci/classification , Chlamydophila psittaci/drug effects , Doxycycline/administration & dosage , Female , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Poultry Diseases/physiopathology , Psittacosis/drug therapy , Psittacosis/microbiology , Psittacosis/physiopathology , Reproduction
12.
Can J Microbiol ; 55(5): 587-98, 2009 May.
Article in English | MEDLINE | ID: mdl-19483787

ABSTRACT

Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al.


Subject(s)
Acidithiobacillus/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Industrial Microbiology , Oligonucleotide Array Sequence Analysis/methods , Synteny , China , Cluster Analysis , Conserved Sequence , Geography , Nucleic Acid Hybridization , Open Reading Frames , Phylogeny , Polymorphism, Genetic , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...