Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(13): e2306013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38243629

ABSTRACT

Diamond holds the highest figure-of-merits among all the known semiconductors for next-generation electronic devices far beyond the performance of conventional semiconductor silicon. To realize diamond integrated circuits, both n- and p-channel conductivity are required for the development of diamond complementary metal-oxide-semiconductor (CMOS) devices, as those established for semiconductor silicon. However, diamond CMOS has never been achieved due to the challenge in n-type channel MOS field-effect transistors (MOSFETs). Here, electronic-grade phosphorus-doped n-type diamond epilayer with an atomically flat surface based on step-flow nucleation mode is fabricated. Consequently, n-channel diamond MOSFETs are demonstrated. The n-type diamond MOSFETs exhibit a high field-effect mobility around 150 cm2 V-1 s-1 at 573 K, which is the highest among all the n-channel MOSFETs based on wide-bandgap semiconductors. This work enables the development of energy-efficient and high-reliability CMOS integrated circuits for high-power electronics, integrated spintronics, and extreme sensors under harsh environments.

2.
Adv Sci (Weinh) ; : e2304525, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037314

ABSTRACT

Flexible electronic devices extended abilities of humans to perceive their environment conveniently and comfortably. Among them, flexible magnetic field sensors are crucial to detect changes in the external magnetic field. State-of-the-art flexible magnetoelectronics do not exhibit low detection limit and large working range simultaneously, which limits their application potential. Herein, a flexible magnetic field sensor possessing a low detection limit of 22 nT and wide sensing range from 22 nT up to 400 mT is reported. With the detection range of seven orders of magnitude in magnetic field sensor constitutes at least one order of magnitude improvement over current flexible magnetic field sensor technologies. The sensor is designed as a cantilever beam structure accommodating a flexible permanent magnetic composite and an amorphous magnetic wire enabling sensitivity to low magnetic fields. To detect high fields, the anisotropy of the giant magnetoimpedance effect of amorphous magnetic wires to the magnetic field direction is explored. Benefiting from mechanical flexibility of sensor and its broad detection range, its application potential for smart wearables targeting geomagnetic navigation, touchless interactivity, rehabilitation appliances, and safety interfaces providing warnings of exposure to high magnetic fields are explored.

3.
Nanomaterials (Basel) ; 13(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37049349

ABSTRACT

Super-high dielectric constant (k) AlOx/TiOy nanolaminates (ATO NLs) are deposited by an atomic layer deposition technique for application in next-generation electronics. Individual multilayers with uniform thicknesses are formed for the ATO NLs. With an increase in AlOx content in each ATO sublayer, the shape of the Raman spectrum has a tendency to approach that of a single AlOx layer. The effects of ATO NL deposition conditions on the electrical properties of the metal/ATO NL/metal capacitors were investigated. A lower deposition temperature, thicker ATO NL, and lower TiOy content in each ATO sublayer can lead to a lower leakage current and smaller loss tangent at 1 kHz for the capacitors. A higher deposition temperature, larger number of ATO interfaces, and higher TiOy content in each ATO sublayer are important for obtaining higher k values for the ATO NLs. With an increase in resistance in the capacitors, the ATO NLs vary from semiconductors to insulators and their k values have a tendency to decrease. For most of the capacitors, the capacitances reduce with increments in absolute measurement voltage. There are semi-circular shapes for the impedance spectra of the capacitors. By fitting them with the equivalent circuit, it is observed that with the increase in absolute voltage, both parallel resistance and capacitance decrease. The variation in the capacitance is explained well by a novel double-Schottky electrode contact model. The formation of super-high k values for the semiconducting ATO NLs is possibly attributed to the accumulation of charges.

4.
Adv Mater ; 35(22): e2211129, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36800532

ABSTRACT

The emergence of superconductivity in doped insulators such as cuprates and pnictides coincides with their doping-driven insulator-metal transitions. Above the critical doping threshold, a metallic state sets in at high temperatures, while superconductivity sets in at low temperatures. An unanswered question is whether the formation of Cooper pairsin a well-established metal will inevitably transform the host material into a superconductor, as manifested by a resistance drop. Here, this question is addressed by investigating the electrical transport in nanoscale rings (full loops) and half loops manufactured from heavily boron-doped diamond. It is shown that in contrast to the diamond half-loops (DHLs) exhibiting a metal-superconductor transition, the diamond nanorings (DNRs) demonstrate a sharp resistance increase up to 430% and a giant negative "magnetoresistance" below the superconducting transition temperature of the starting material. The finding of the unconventional giant negative "magnetoresistance", as distinct from existing categories of magnetoresistance, that is, the conventional giant magnetoresistance in magnetic multilayers, the colossal magnetoresistance in perovskites, and the geometric magnetoresistance in semiconductor-metal hybrids, reveals the transformation of the DNRs from metals to bosonic semiconductors upon the formation of Cooper pairs. DNRs like these could be used to manipulate Cooper pairs in superconducting quantum devices.

5.
Sci Rep ; 12(1): 19907, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402811

ABSTRACT

To understand and control thermal conductance of interface between metal and semiconductor has now become a crucial task for the thermal design and management of nano-electronic and micro-electronic devices. The interfacial alignments and electronic characteristics of the interfaces between metal and semiconductor are studied using a first-principles calculation based on hybrid density functional theory. The thermal conductance of interfaces between metal and semiconductor were calculated and analyzed using diffuse mismatch model, acoustic mismatch model and nonequilibrium molecular dynamics methods. Especially, according to nonequilibrium molecular dynamics, the values of thermal conductance were obtained to be 32.55 MW m-2 K-1 and 341.87 MW m-2 K-1 at C-Cu and Si-Cu interfaces, respectively. These results of theoretical simulation calculations are basically consistent with the current experimental data, which indicates that phonon-phonon interaction play a more important role than electron-phonon interaction during heat transport. It may be effective way to improve the interfacial thermal conductance through enhancing the interface coupling strength at the metal-semiconductor interface because the strong interfacial scattering plays a role in suppressing in the weaker interface coupling heterostructure, leading to the lower thermal conductance of interfaces. This could provide a beneficial reference for the design of the Schottky diode and thermal management at the interfaces between metal and semiconductor.

6.
Ultramicroscopy ; 234: 113464, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35045375

ABSTRACT

Micro-cantilever beams have been widely used for surface sensing applications as well as atomic force microscope. However, surface stress appears in cantilever beams due to a variety of factors such as the absorption of molecules, temperature variations, materials imperfectness, and the fabrication process. Single-crystal diamond (SCD) has been regarded as an ideal material for cantilever sensors through the surface effect due to the outstanding mechanical rigidity and chemical inertness. In this paper, the authors report on the SCD cantilever beams fabricated by a smart-cut method with high quality factors up to 14 000 and stress characterization by surface geometry curvature observation and Raman microscopy. Although both surface geometry profile and Raman shift show the existence of surface stress in the SCD cantilever beams, the resonance properties are little influenced and maintain excellent rigidity and high quality. Therefore, the SCD-on-SCD resonator provides a promising platform for high-reliability microscopy applications.

7.
Adv Sci (Weinh) ; 8(10): 2004208, 2021 05.
Article in English | MEDLINE | ID: mdl-34026450

ABSTRACT

The multi-mode pain-perceptual system (MMPPS) is essential for the human body to perceive noxious stimuli in all circumstances and make an appropriate reaction. Based on the central sensitization mechanism, the MMPPS can switch between different working modes and thus offers a smarter protection mechanism to human body. Accordingly, before injury MMPPS can offer warning of excessive pressure with normal pressure threshold. After injury, extra care on the periphery of damage will be activated by decreasing the pressure threshold. Furthermore, the MMPPS will gradually recover back to a normal state as damage heals. Although current devices can realize basic functions like damage localization and nociceptor signal imitating, the development of a human-like MMPPS is still a great challenge. Here, a bio-inspired MMPPS is developed for prosthetics protection, in which all working modes is realized and controlled by mimicking the central sensitization mechanism. Accordingly, the system warns one of a potential injury, identifies the damaged area, and subsequently offers extra care. The proposed system can open new avenues for designing next-generation prosthetics, especially make other smart sensing systems operate under complete protection against injuries.


Subject(s)
Equipment Design/methods , Nociceptors/metabolism , Pain/prevention & control , Physical Stimulation/methods , Skin/innervation , Touch/physiology , Wearable Electronic Devices/standards , Biomedical Engineering/methods , Humans , Pain/physiopathology , Skin/metabolism , Skin/physiopathology
8.
Phys Rev Lett ; 125(20): 206802, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33258634

ABSTRACT

The ultrawide band gap of diamond distinguishes it from other semiconductors, in that all known defects have deep energy levels that are less active at room temperature. Here, we present the effect of deep defects on the mechanical energy dissipation of single-crystal diamond experimentally and theoretically up to 973 K. Energy dissipation is found to increase with temperature and exhibits local maxima due to the interaction between phonons and deep defects activated at specific temperatures. A two-level model with deep energies is proposed to explain well the energy dissipation at elevated temperatures. It is evident that the removal of boron impurities can substantially increase the quality factor of room-temperature diamond mechanical resonators. The deep energy nature of the defects bestows single-crystal diamond with outstanding low intrinsic energy dissipation in mechanical resonators at room temperature or above.

9.
Sci Technol Adv Mater ; 21(1): 515-523, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32939176

ABSTRACT

We report on a highly sensitive gallium nitride (GaN) micro-electromechanical (MEMS) resonator with a record quality factor (Q) exceeding 105 at the high resonant frequency (f) of 911 kHz by the strain engineering for the GaN-on-Si structure. The f of the double-clamped GaN beam bridge is increased from 139 to 911 kHz when the tensile stress is increased to 640 MPa. Although it is usually regarded that the energy dissipation increases with increasing resonant frequency, an ultra-high Q-factor which is more than two orders of magnitude higher than those of the other reported GaN-based MEMS is obtained. The high Q-factor results from the large tensile stress which can be intentionally introduced and engineered in the GaN epitaxial layer by utilizing the lattice mismatch between GaN and Si, leading to the stored elastic energy and drastically decreasing the energy dissipation. The developed GaN MEMS is further demonstrated as a highly sensitive mass sensor with a resolution of 10-12 g/s through detecting the microdroplet evaporation process. This work provides an avenue to improve the f × Q product of the MEMS through an internally strained structure.

10.
ACS Appl Mater Interfaces ; 12(20): 23155-23164, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32336083

ABSTRACT

A conventional wisdom is that the sensing properties of magnetic sensors at high temperatures will be degraded due to the materials' deterioration. Here, the concept of high-temperature enhancing magnetic sensing is proposed based on the hybrid structure of SCD MEMS resonator functionalized with a high thermal-stable ferromagnetic galfenol (FeGa) film. The delta E effect of the magnetostrictive FeGa thin film on Ti/SCD cantilevers is investigated by varying the operating temperature from 300 to 773 K upon external magnetic fields. The multilayer structure magnetic sensor presents a high sensitivity of 71.1 Hz/mT and a low noise level of 10 nT/√Hz at 773 K for frequencies higher than 7.5 kHz. The high-temperature magnetic sensing performance exceeds those of the reported magnetic sensors. Furthermore, an anomalous behavior is observed on the delta E effect, which exhibits a positive temperature dependence with the law of Tn. Based on the resonance frequency shift of the FeGa/Ti/SCD cantilever, the strain coupling in the multilayers of the FeGa/Ti/SCD structure under a magnetic field is strengthened with increasing temperature. The delta E effect shows a strong relationship with the azimuthal angle, θ, as a sine function at 300 and 773 K. This work provides a strategy to develop magnetic sensors for high-temperature applications with performance superior to that of the present ones.

11.
Opt Express ; 27(6): 8935-8942, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31052704

ABSTRACT

The authors report on a high-performance metal-semiconductor-metal (MSM) photodetector fabricated on the Cd0.96Zn0.04Te single crystal with the photoresponse from visible to near infrared region. Benefitting from the high-quality single crystallization, an ultra-low dark current of ~10-10 A was obtained at a high applied voltage of 10 V, leading to a photo-to-dark-current ratio of more than 103 at 700 nm light illumination. The highest responsivity is estimated to be 1.43 A/W with a specific detectivity of 3.31 × 1012 Jones at 10 V at a relatively lower injection power density. The discrimination ratio between the near infrared region of 800 nm and 900 nm is almost 102, which is high enough for the accurate spectra selectivity. The MSM photodetector also exhibits a fast response speed of ~800 µs and extremely low persistent photoconductivity (PPC), while the PPC is inhibited at high temperatures.

12.
ACS Nano ; 13(2): 1195-1203, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30703319

ABSTRACT

Two-dimensional (2D) materials have attracted intense attention in nanoscience and nanotechnology due to their outstanding properties. Among these materials, the emerging family of 2D transition metal carbides, carbonitrides, and nitrides (referred to as MXenes) stands out because of the vast available chemical space for tuning materials chemistry and surface termination, offering opportunities for property tailoring. Specifically, semiconducting properties are needed to enable utilization in optoelectronics, but direct band gaps are experimentally challenging to achieve in these 2D carbides. Here, we demonstrate the fabrication of 2D hydroxyl-functionalized and carbon-deficient scandium carbide, namely, ScC xOH, by selective etching of a layered parent ScAl3C3 compound. The 2D configuration is determined as a direct band gap semiconductor, with an experimentally measured band gap approximated at 2.5 eV. Furthermore, this ScC xOH-based device exhibits excellent photoresponse in the ultraviolet-visible light region (responsivity of 0.125 A/W at 360 nm/10 V, and quantum efficiency of 43%). Thus, this 2D ScC xOH direct band gap semiconductor may find applications in visible light detectors, photocatalytic chemistry, and optoelectronic devices.

13.
Sci Robot ; 3(22)2018 09 19.
Article in English | MEDLINE | ID: mdl-33141753

ABSTRACT

Recent achievements in the field of electronic skin have provided promising technology for prosthetic systems. However, the development of a bionic tactile-perception system that exhibits integrated stimuli sensing and neuron-like information-processing functionalities in a low-pressure regime remains a challenge. Here, we demonstrate a tactile sensor for smart prosthetics based on giant magneto-impedance (GMI) material embedded with an air gap. The sensor exhibits a high sensitivity of 120 newton-1 (or 4.4 kilopascal-1) and a very low detection limit of 10 micronewtons (or 0.3 pascals). The integration of the tactile sensor with an inductance-capacitance (LC) oscillation circuit enabled direct transduction of force stimuli into digital-frequency signals. The frequency increased with the force stimuli, consistent with the relationship between stimuli and human responses. The minimum loading of 50 micronewtons (or 1.25 pascals), which is less than the sensing threshold value of human skin, was also encoded into the frequency, similar to the pulse waveform of humans. The proposed tactile sensor not only showed desirable sensitivity and low detection limit but also exhibited transduction of digital-frequency signals like human stimuli responses. These features of the GMI-based tactile sensor show potential for its applications in smart prosthetics, especially prosthetic limbs that can functionally replace natural limbs.

14.
Sci Rep ; 6: 34757, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708372

ABSTRACT

The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device's electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET's output current (174.2 mA mm-1) is much higher than that of the planar-type device (45.2 mA mm-1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec-1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications.

15.
Sci Rep ; 6: 23683, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27021054

ABSTRACT

The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of -2 V and drain bias of -15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm(2)/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG.

16.
Sci Rep ; 5: 7716, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25578788

ABSTRACT

Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.

17.
Sci Rep ; 4: 6847, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25355096

ABSTRACT

This work presents a method for synthesis of high-yield, uniform and band gap tunable Zn2SnO4 nanocubes. These nanocubes can be further self-assembled into a series of novel nanofilms with tunable optical band gaps from 3.54 to 3.18 eV by simply increasing the heat treatment temperature. The Zn2SnO4 nanocube-nanofilm based device has been successfully fabricated and presents obviously higher photocurrent, larger photocurrent to dark current ratio than the previously reported individual nanostructure-based UV-light photodetectors, and could be used in high performance photodetectors, solar cells, and electrode materials for Li-ion battery.

18.
Sci Rep ; 4: 6395, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25242175

ABSTRACT

Although several high-k insulators have been deposited on the diamond for metal-insulator-semiconductor field effect transistors (MISFETs) fabrication, the k values and current output are still not fully satisfactory. Here, we present a high-k ZrO2 layer on the diamond for the MISFETs. The k value for ZrO2 is determined by capacitance-voltage characteristic to be 15.4. The leakage current density is smaller than 4.8 × 10(-5) A · cm(-2) for the gate voltage ranging from -4.0 to 2.0 V. The low on-resistance MISFET is obtained by eliminating source/drain-channel interspaces, which shows a large current output and a high extrinsic transconductance. The high-performance diamond MISFET fabrication will push forward the development of power devices.

19.
Nanoscale ; 6(14): 8084-90, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24915978

ABSTRACT

CdS/ZnO branched heterostructures have been successfully synthesized by combining thermal vapour deposition and a hydrothermal method. Drastic optoelectronic performance enhancement of such heterostructures was revealed, compared to plain CdS nanobelts, as documented by comparative in situ optoelectronic studies on corresponding individual nanostructures using an originally designed laser-compatible transmission electron microscopy (TEM) technique. Furthermore, flexible thin-film based photodetectors based on standard CdS nanobelts and newly prepared CdS/ZnO heterostructures were fabricated on PET substrates, and comparative photocurrent and photo-responsivity measurements thoroughly verified the in situ TEM results. The CdS/ZnO branched heterostructures were found to have better performance than standard CdS nanobelts for optoelectronic applications with respect to the photocurrent to dark current ratio and responsivity.

20.
Adv Mater ; 26(19): 3088-93, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24523228

ABSTRACT

The application of nanofilm networks made of branched ZnS-ZnO nanostructures as a flexible UV photodetector is demonstrated. The fabricated devices show excellent operational characteristics: tunable spectral selectivity, widerange photoresponse, fast response speed, and excellent environmental stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...