Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1946, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029133

ABSTRACT

Optical encryption is a promising approach to protecting secret information owing to the advantages of low-power consumption, parallel, high-speed, and multi-dimensional processing capabilities. Nevertheless, conventional strategies generally suffer from bulky system volume, relatively low security level, redundant measurement, and/or requirement of digital decryption algorithms. Here, we propose a general optical security strategy dubbed meta-optics-empowered vector visual cryptography, which fully exploits the abundant degrees of freedom of light as well as the spatial dislocation as key parameters, significantly upgrading the security level. We also demonstrate a decryption meta-camera that can implement the reversal coding procedure for real-time imaging display of hidden information, avoiding redundant measurement and digital post-processing. Our strategy features the merits of a compact footprint, high security, and rapid decryption, which may open an avenue for optical information security and anti-counterfeiting.

2.
Ther Drug Monit ; 44(5): 615-624, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36101928

ABSTRACT

BACKGROUND: The study aimed to establish a population pharmacokinetic (PPK) model of tacrolimus for Chinese patients with nephrotic syndrome using the patient's genotype and Wuzhi capsule dosage as the main test factors. METHODS: Ninety-six adult patients with nephrotic syndrome, who were receiving tacrolimus treatment, were enrolled. A nonlinear mixed-effects model was used to determine the influencing factors of interindividual tacrolimus metabolism variation and establish a PPK model. To optimize the tacrolimus dosage, 10,000 Monte Carlo simulations were performed. RESULTS: The 1-chamber model of first-order absorption and elimination was the most suitable model for the data in this study. The typical population tacrolimus clearance (CL/F) value was 16.9 L/h. The percent relative standard error (RSE%) of CL/F was 12%. Increased Wuzhi capsule and albumin doses both decreased the tacrolimus CL/F. In CYP3A5 homozygous mutation carriers, the CL/F was 39% lower than that of carriers of the wild-type and heterozygous mutation. The tacrolimus CL/F in patients who were coadministered glucocorticoids was 1.23-fold higher than that of the control. According to the patient genotype and combined use of glucocorticoids, 26 combinations of Wuzhi capsule and tacrolimus doses were matched. The Monte Carlo simulation identified the most suitable combination scheme. CONCLUSIONS: An improved tacrolimus PPK model for patients with nephrotic syndrome was established, and the most suitable combination of Wuzhi capsule and tacrolimus doses was identified, thus, facilitating the selection of a more economical and safe administration regimen.


Subject(s)
Nephrotic Syndrome , Tacrolimus , Adult , China , Glucocorticoids/therapeutic use , Humans , Immunosuppressive Agents/pharmacokinetics , Models, Biological , Monte Carlo Method , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Tacrolimus/pharmacokinetics
3.
Biosens Bioelectron ; 150: 111869, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31735624

ABSTRACT

An ultrasensitive electrochemical biosensor was developed to identify the low levels of uric acid (UA) in human serum. The gold/cobalt (Au/Co) bimetallic nanoparticles (NPs) decorated hollow nanoporous carbon framework (Au/Co@HNCF) was synthesized as a nanozyme by pyrolysis of the Au (III)-etching zeolitic imidazolate framework-67 (ZIF-67). The external Au NPs combined with internal Co NPs on the hollow carbon framework exhibited enhanced activity for UA oxidation, thereby generating superior signals. Accordingly, the Au/Co@HNCF biosensor presented ranking performances with a low detection limit of 0.023 µM (S/N = 3), an ultrahigh sensitivity of 48.4 µA µM-1 cm-2, and an extensive response in the linear region of 0.1-25 µM and the logarithmic region of 25-2500 µM. Owing to the ordered nanoporous framework and carbon interfacial features, the Au/Co@HNCF biosensor displayed adequate selectivity for UA sensing over a series of biomolecules. In addition, the Au/Co@HNCF biosensor was employed to quantify UA in human serum samples. The test results were basically consistent with those of a commercial apparatus, and thus demonstrated that the proposed Au/Co@HNCF biosensor was reliable for UA determination in clinical research.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Metal Nanoparticles/chemistry , Uric Acid/isolation & purification , Carbon/chemistry , Cobalt/chemistry , Gold/chemistry , Humans , Limit of Detection , Nanopores , Uric Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...