Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38045302

ABSTRACT

Rationale: Pulmonary innate immune cells play a central role in the initiation and perpetuation of chronic obstructive pulmonary disease (COPD), however the precise mechanisms that orchestrate the development and severity of COPD are poorly understood. Objectives: We hypothesized that the recently described family of innate lymphoid cells (ILCs) play an important role in COPD. Methods: Subjects with COPD and healthy controls were clinically evaluated, and their sputum samples were assessed by flow cytometry. A mouse model of spontaneous COPD [genetically deficient in surfactant protein-D (SP-D -/- )] and ozone (O 3 ) exposure were used to examine the mechanism by which lack of functional SP-D may skew ILC2s to produce IL-17A in combination with IL-5 and IL-13, leading to a mixed inflammatory profile and more severe disease. Measurements and Main Results: COPD was characterized by poor spirometry, sputum inflammation, and the emergence of sputum GATA3 + ILCs (ILC2s), but not T-bet + ILCs (ILC1s) nor RORγt + ILCs (ILC3s). COPD subjects with elevated sputum ILC2s (the ILC2 high group) had worse spirometry and sputum neutrophilia and eosinophilia than healthy and ILC2 low subjects. This was associated with the presence of dual-positive IL-5 + IL-17A + and IL-13 + IL-17A + ILCs and nonfunctional SP-D in the sputum in ILC2 high subjects. SP-D -/- mice showed spontaneous airway neutrophilia. Lack of SP-D in the mouse lung licensed ILC2s to produce IL-17A, which was dose-dependently inhibited by recombinant SP-D. SP-D -/- mice showed enhanced susceptibility to O 3 -induced airway neutrophilia, which was associated with the emergence of inflammatory IL-13 + IL-17A + ILCs. Conclusions: We report that the presence of sputum ILC2s predicts the severity of COPD, and unravel a novel pathway of IL-17A plasticity in lung ILC2s, prevented by the immunomodulatory protein SP-D.

3.
Nat Commun ; 14(1): 7167, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935684

ABSTRACT

Organ regeneration necessitates precise coordination of accelerators and brakes to restore organ function. However, the mechanisms underlying this intricate molecular crosstalk remain elusive. In this study, the level of proenkephalin-A (PENK-A), expressed by renal proximal tubular epithelial cells, decreases significantly with the loss of renal proximal tubules and increased at the termination phase of zebrafish kidney regeneration. Notably, this change contrasts with the role of hydrogen peroxide (H2O2), which acts as an accelerator in kidney regeneration. Through experiments with penka mutants and pharmaceutical treatments, we demonstrate that PENK-A inhibits H2O2 production in a dose-dependent manner, suggesting its involvement in regulating the rate and termination of regeneration. Furthermore, H2O2 influences the expression of tcf21, a vital factor in the formation of renal progenitor cell aggregates, by remodeling H3K4me3 in renal cells. Overall, our findings highlight the regulatory role of PENK-A as a brake in kidney regeneration.


Subject(s)
Hydrogen Peroxide , Kidney , Animals , Kidney/metabolism , Hydrogen Peroxide/metabolism , Zebrafish , Regeneration , Kidney Tubules/metabolism
4.
J Autoimmun ; : 103122, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37865580

ABSTRACT

Sarcoidosis is a complex systemic disease with clinical heterogeneity based on varying phenotypes and natural history. The detailed etiology of sarcoidosis remains unknown, but genetic predisposition as well as environmental exposures play a significant role in disease pathogenesis. We performed a comprehensive review of germline genetic (DNA) and transcriptomic (RNA) studies of sarcoidosis, including both previous studies and more recent findings. In this review, we provide an assessment of the following: genetic variants in sarcoidosis susceptibility and phenotypes, ancestry- and sex-specific genetic variants in sarcoidosis, shared genetic architecture between sarcoidosis and other diseases, and gene-environment interactions in sarcoidosis. We also highlight the unmet needs in sarcoidosis genetic studies, including the pressing requirement to include diverse populations and have consistent definitions of phenotypes in the sarcoidosis research community to help advance the application of genetic predisposition to sarcoidosis disease risk and manifestations.

5.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37583809

ABSTRACT

Background: While vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides significant protection from coronavirus disease 2019, the protection afforded to individuals with chronic lung disease is less well established. This study seeks to understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity. Methods: Deep immune phenotyping of humoral and cell-mediated responses to the SARS-CoV-2 vaccine was performed in patients with asthma, COPD and interstitial lung disease (ILD) compared to healthy controls. Results: 48% of vaccinated patients with chronic lung diseases had reduced antibody titres to the SARS-CoV-2 vaccine antigen relative to healthy controls. Vaccine antibody titres were significantly reduced among asthma (p<0.035), COPD (p<0.022) and a subset of ILD patients as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B-cells in circulation. Vaccine-specific memory T-cells were significantly reduced in patients with asthma (CD8+ p<0.004; CD4+ p<0.023) and COPD (CD8+ p<0.008) compared to healthy controls. Impaired T-cell responsiveness was also observed in a subset of ILD patients (CD8+ 21.4%; CD4+ 42.9%). Additional heterogeneity between healthy and disease cohorts was observed among bulk and vaccine-specific follicular T-helper cells. Conclusions: Deep immune phenotyping of the SARS-CoV-2 vaccine response revealed the complex nature of vaccine-elicited immunity and highlights the need for more personalised vaccination schemes in patients with underlying lung conditions.

6.
Hum Mol Genet ; 32(16): 2669-2678, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37399103

ABSTRACT

Sarcoidosis is a complex systemic disease. Our study aimed to (1) identify novel alleles associated with sarcoidosis susceptibility; (2) provide an in-depth evaluation of HLA alleles and sarcoidosis susceptibility and (3) integrate genetic and transcription data to identify risk loci that may more directly impact disease pathogenesis. We report a genome-wide association study of 1335 sarcoidosis cases and 1264 controls of European descent (EA) and investigate associated alleles in a study of African Americans (AA: 1487 cases and 1504 controls). The EA and AA cohort was recruited from multiple United States sites. HLA alleles were imputed and tested for association with sarcoidosis susceptibility. Expression quantitative locus and colocalization analysis were performed using a subset of subjects with transcriptome data. Forty-nine SNPs in the HLA region in HLA-DRA, -DRB9, -DRB5, -DQA1 and BRD2 genes were significantly associated with sarcoidosis susceptibility in EA, rs3129888 was also a risk variant for sarcoidosis in AA. Classical HLA alleles DRB1*0101, DQA1*0101 and DQB1*0501, which are highly correlated, were also associated with sarcoidosis. rs3135287 near HLA-DRA was associated with HLA-DRA expression in peripheral blood mononuclear cells and bronchoalveolar lavage from subjects and lung tissue and whole blood from GTEx. We identified six novel SNPs (out of the seven SNPs representing the 49 significant SNPs) and nine HLA alleles associated with sarcoidosis susceptibility in the largest EA population. We also replicated our findings in an AA population. Our study reiterates the potential role of antigen recognition and/or presentation HLA class II genes in sarcoidosis pathogenesis.


Subject(s)
Genome-Wide Association Study , Sarcoidosis , Humans , Genetic Predisposition to Disease , HLA-DR alpha-Chains/genetics , Leukocytes, Mononuclear , Sarcoidosis/genetics , HLA-DRB1 Chains/genetics , Alleles
7.
medRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747750

ABSTRACT

The protection afforded by vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to individuals with chronic lung disease is not well established. To understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity we performed deep immunophenotyping of the humoral and cell mediated SARS-CoV-2 vaccine response in an investigative cohort of vaccinated patients with diverse pulmonary conditions including asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung disease (ILD). Compared to healthy controls, 48% of vaccinated patients with chronic lung diseases had reduced antibody titers to the SARS-CoV-2 vaccine antigen as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B cells. Vaccine-specific CD4 and CD8 T cells were also significantly reduced in patients with asthma, COPD, and a subset of ILD patients compared to healthy controls. These findings reveal the complex nature of vaccine-elicited immunity in high-risk patients with chronic lung disease.

8.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747844

ABSTRACT

Introduction: Sarcoidosis is a heterogeneous, granulomatous disease that can prove difficult to diagnose, with no accurate biomarkers of disease progression. Therefore, we profiled and integrated the DNA methylome, mRNAs, and microRNAs to identify molecular changes associated with sarcoidosis and disease progression that might illuminate underlying mechanisms of disease and potential genomic biomarkers. Methods: Bronchoalveolar lavage cells from 64 sarcoidosis subjects and 16 healthy controls were used. DNA methylation was profiled on Illumina HumanMethylationEPIC arrays, mRNA by RNA-sequencing, and miRNAs by small RNA-sequencing. Linear models were fit to test for effect of diagnosis and phenotype, adjusting for age, sex, and smoking. We built a supervised multi-omics model using a subset of features from each dataset. Results: We identified 46,812 CpGs, 1,842 mRNAs, and 5 miRNAs associated with sarcoidosis versus controls and 1 mRNA, SEPP1 - a protein that supplies selenium to cells, associated with disease progression. Our integrated model emphasized the prominence of the PI3K/AKT1 pathway in sarcoidosis, which is important in T cell and mTOR function. Novel immune related genes and miRNAs including LYST, RGS14, SLFN12L, and hsa-miR-199b-5p, distinguished sarcoidosis from controls. Our integrated model also demonstrated differential expression/methylation of IL20RB, ABCC11, SFSWAP, AGBL4, miR-146a-3p, and miR-378b between non-progressive and progressive sarcoidosis. Conclusions: Leveraging the DNA methylome, transcriptome, and miRNA-sequencing in sarcoidosis BAL cells, we detected widespread molecular changes associated with disease, many which are involved in immune response. These molecules may serve as diagnostic/prognostic biomarkers and/or drug targets, although future testing will be required for confirmation.

9.
Kidney Int ; 103(5): 903-916, 2023 05.
Article in English | MEDLINE | ID: mdl-36805450

ABSTRACT

Accumulating evidence highlights mitochondrial dysfunction as a crucial factor in the pathogenesis of acute kidney injury (AKI); thus, novel therapeutic strategies maintaining mitochondrial homeostasis are highly anticipated. Recent studies have shown that cobaltosic oxide has peroxidase-like catalytic activities, although its role and mechanism remain elusive in AKI. In the present study, we synthesized and identified cobaltosic oxide-polyethylene glycol-triphenylphosphine (COPT) nanoparticles by conjugating cobaltosic oxide with polyethylene glycol and triphenylphosphine, to improve its biocompatibility and mitochondria-targeting property. We found that COPT preferentially accumulated in the kidney proximal tubule cells, and significantly alleviated ischemic AKI in mouse models and gentamicin induced-AKI in the zebrafish model. COPT also inhibited the transition from AKI to chronic kidney disease (CKD), with few side effects. Further studies demonstrated that COPT localized in the mitochondria, and ameliorated hypoxia-reoxygenation-mediated mitochondrial damage through enhancing mitophagy in vitro and in vivo. Mechanistically, COPT dose-dependently induced the expression of Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3), while knockdown of BNIP3 attenuated COPT-induced mitophagic flux and mitochondrial protection. Thus, our findings suggest that COPT nanoparticles ameliorate AKI and its progression to CKD through inducing BNIP3-mediated mitophagy, indicating that COPT may serve as a promising mitochondria-targeting therapeutic agent against AKI.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Mice , Animals , Mitophagy , Zebrafish/metabolism , Renal Insufficiency, Chronic/drug therapy , Acute Kidney Injury/pathology , Mitochondrial Proteins/metabolism , Membrane Proteins/metabolism
10.
Elife ; 122023 01 16.
Article in English | MEDLINE | ID: mdl-36645741

ABSTRACT

In organ regeneration, progenitor and stem cells reside in their native microenvironment, which provides dynamic physical and chemical cues essential to their survival, proliferation, and differentiation. However, the types of cells that form the native microenvironment for renal progenitor cells (RPCs) have not been clarified. Here, single-cell sequencing of zebrafish kidney reveals fabp10a as a principal marker of renal interstitial cells (RICs), which can be specifically labeled by GFP under the control of fabp10a promoter in the fabp10a:GFP transgenic zebrafish. During nephron regeneration, the formation of nephrons is supported by RICs that form a network to wrap the RPC aggregates. RICs that are in close contact with RPC aggregates express cyclooxygenase 2 (Cox2) and secrete prostaglandin E2 (PGE2). Inhibiting PGE2 production prevents nephrogenesis by reducing the proliferation of RPCs. PGE2 cooperates with Wnt4a to promote nephron maturation by regulating ß-catenin stability of RPC aggregates. Overall, these findings indicate that RICs provide a necessary microenvironment for rapid nephrogenesis during nephron regeneration.


Subject(s)
Dinoprostone , Zebrafish , Animals , Nephrons , Kidney/physiology , Animals, Genetically Modified
11.
Am J Respir Cell Mol Biol ; 67(6): 632-640, 2022 12.
Article in English | MEDLINE | ID: mdl-35972918

ABSTRACT

Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.


Subject(s)
Berylliosis , Humans , Berylliosis/genetics , T-Lymphocytes , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , Immunity, Innate/genetics , RNA , Chronic Disease
14.
Respir Med ; 197: 106832, 2022 06.
Article in English | MEDLINE | ID: mdl-35462298

ABSTRACT

RATIONALE: SARS-CoV-2 continues to cause a global pandemic and management of COVID-19 in outpatient settings remains challenging. OBJECTIVE: We sought to describe characteristics of patients with chronic respiratory disease (CRD) experiencing symptoms consistent with COVID-19, who were seen in a novel Acute Respiratory Clinic, prior to widely available testing, emergence of variants, COVID-19 vaccination, and post-vaccination (breakthrough) SARS-CoV-2 infections. METHODS: Retrospective electronic medical record data were analyzed from 907 adults with presumed COVID-19 seen between March 16, 2020 and January 7, 2021. Data included demographics, comorbidities, medications, vital signs, laboratory tests, pulmonary function tests, patient disposition, and co-infections. The overdispersed data (aod) R package was used to create a logit model using COVID-19 diagnosis by PCR as the dichotomous outcome variable. Univariate, conventional multivariate and elastic net machine learning were used to analyze data. RESULTS: Male gender, elevated baseline temperature, and respiratory rate predicted COVID-19 diagnosis. Eosinopenia, neutrophilia, and lymphocytosis were also associated with COVID-19 diagnosis. However, asthma and COPD diagnoses were not associated with SARS-CoV-2 PCR positive test. Male gender, low oxygen saturation, and lower forced expiratory volume in 1 s (FEV1) were associated with higher hospital referral. CONCLUSIONS: CRD patients with acute respiratory symptoms in the ambulatory setting were more likely to have COVID-19 if male, febrile and tachypneic. Patients with lower pre-morbid FEV1 and lower SPO2 are more likely to be referred to the hospital. A composite of vitals sigs and WBC differential help risk stratify CRD patients seeking care for presumed COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines , Fever/diagnosis , Humans , Male , Referral and Consultation , Retrospective Studies
15.
Respir Res ; 23(1): 88, 2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35397561

ABSTRACT

BACKGROUND: Most phenotyping paradigms in sarcoidosis are based on expert opinion; however, no paradigm has been widely adopted because of the subjectivity in classification. We hypothesized that cluster analysis could be performed on common clinical variables to define more objective sarcoidosis phenotypes. METHODS: We performed a retrospective cohort study of 554 sarcoidosis cases to identify distinct phenotypes of sarcoidosis based on 29 clinical features. Model-based clustering was performed using the VarSelLCM R package and the Integrated Completed Likelihood (ICL) criteria were used to estimate number of clusters. To identify features associated with cluster membership, features were ranked based on variable importance scores from the VarSelLCM model, and additional univariate tests (Fisher's exact test and one-way ANOVA) were performed using q-values correcting for multiple testing. The Wasfi severity score was also compared between clusters. RESULTS: Cluster analysis resulted in 6 sarcoidosis phenotypes. Salient characteristics for each cluster are as follows: Phenotype (1) supranormal lung function and majority Scadding stage 2/3; phenotype (2) supranormal lung function and majority Scadding stage 0/1; phenotype (3) normal lung function and split Scadding stages between 0/1 and 2/3; phenotype (4) obstructive lung function and majority Scadding stage 2/3; phenotype (5) restrictive lung function and majority Scadding stage 2/3; phenotype (6) mixed obstructive and restrictive lung function and mostly Scadding stage 4. Although there were differences in the percentages, all Scadding stages were encompassed by all of the phenotypes, except for phenotype 1, in which none were Scadding stage 4. Clusters 4, 5, 6 were significantly more likely to have ever been on immunosuppressive treatment and had higher Wasfi disease severity scores. CONCLUSIONS: Cluster analysis produced 6 sarcoidosis phenotypes that demonstrated less severe and severe phenotypes. Phenotypes 1, 2, 3 have less lung function abnormalities, a lower percentage on immunosuppressive treatment and lower Wasfi severity scores. Phenotypes 4, 5, 6 were characterized by lung function abnormalities, more parenchymal abnormalities, an increased percentage on immunosuppressive treatment and higher Wasfi severity scores. These data support using cluster analysis as an objective and clinically useful way to phenotype sarcoidosis subjects and to empower clinicians to identify those with more severe disease versus those who have less severe disease, independent of Scadding stage.


Subject(s)
Sarcoidosis , Cluster Analysis , Humans , Phenotype , Retrospective Studies , Sarcoidosis/diagnosis , Sarcoidosis/epidemiology , Sarcoidosis/genetics , Severity of Illness Index
16.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-35237683

ABSTRACT

Multiple overlapping pathways are identified in tissue, BAL cells, PBMCs and a sarcoidosis in vitro granuloma model. Inferences from omic studies are constrained by small sample sizes. Studies comparing differences between sarcoidosis phenotypes are needed. https://bit.ly/30NaHz4.

18.
Chest ; 161(1): 152-168, 2022 01.
Article in English | MEDLINE | ID: mdl-34364869

ABSTRACT

BACKGROUND: Sarcoidosis-related hospitalizations have been increasing in the past decade. There is a paucity of data on mortality trends over time in patients with pulmonary sarcoidosis and respiratory failure who are hospitalized. RESEARCH QUESTION: What are the national temporal trends over time in hospitalization and inpatient mortality rates in patients with pulmonary sarcoidosis and respiratory failure hospitalized in the United States between 2007 and 2018? STUDY DESIGN AND METHODS: Hospitalization data between 2007 and 2018 were extracted from the National Inpatient Sample for subjects with pulmonary sarcoidosis. Inpatient mortality was stratified by age, respiratory failure, mechanical ventilation (MV), hospital location, and setting (rural vs urban, academic vs nonacademic). A Cochran-Armitage test for trend was used to assess the linear trend in mortality, respiratory failure, and need for MV. RESULTS: Hospitalizations in patients with pulmonary sarcoidosis increased from 258.5 per 1,000,000 hospitalizations in 2007 to 705.7 per 1,000,000 in 2018. Hospitalizations for respiratory failure increased ninefold from 25.9 to 239.4 per 1,000,000 hospitalizations, and the need for MV increased threefold from 9.4 per 1,000,000 in 2007 to 29.4 per 1,000,000 in 2018. All-cause inpatient mortality was 2.6%; however, mortality was 13 times higher in patients with respiratory failure (10.6% vs 0.8%) and 26 times higher in patients who required MV (31.2% vs 1.2%). Inpatient mortality associated with respiratory failure declined 50% from 17.2% in 2007 to 6.6% in 2018. Independent inpatient mortality predictors were older age (adjusted hazard ratio [aHR], 1.025), respiratory failure (aHR, 3.12), need for MV (aHR, 6.01), pulmonary hypertension (pHTN; aHR, 1.44), pulmonary embolism (aHR, 1.61), and frailty (aHR, 3.10). INTERPRETATION: Hospitalizations for respiratory failure in patients with pulmonary sarcoidosis are increasing; however, inpatient mortality from respiratory failure has declined. Older age, respiratory failure, pHTN, and frailty are important predictors of inpatient mortality in patients with pulmonary sarcoidosis who are hospitalized.


Subject(s)
Hospital Mortality/trends , Hospitalization/trends , Sarcoidosis, Pulmonary/physiopathology , Adult , Age Factors , Aged , Aged, 80 and over , Female , Frailty/epidemiology , Humans , Hypertension, Pulmonary/epidemiology , Male , Middle Aged , Proportional Hazards Models , Pulmonary Embolism/epidemiology , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Sarcoidosis, Pulmonary/complications , Sarcoidosis, Pulmonary/therapy , United States , Young Adult
19.
Biomolecules ; 11(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34572583

ABSTRACT

Acute renal failure (ARF) is a clinical critical syndrome with rapid and severe decline of renal function. Complications of ARF, especially its cardiac complications (cardiorenal syndrome type 3, CRS-3), are the main causes of death in patients with ARF. However, the shortage and limited efficacy of therapeutic drugs make it significant to establish new large-scale drug screening models. Based on the Nitroreductase/Metronidazole (NTR/MTZ) cell ablation system, we constructed a Tg(cdh17:Dendra2-NTR) transgenic zebrafish line, which can specifically ablate renal tubular epithelial cells. The absence of renal tubular epithelial cells can lead to ARF in zebrafish larvae. The ARF symptoms, such as heart enlargement, slow heart rate and blood stasis, are similar to the clinical manifestations of human CRS-3. Furthermore, two therapeutic drugs (digoxin and enalapril) commonly used in the clinical treatment of heart failure were also effective in alleviating the symptoms of CRS-3 in zebrafish, which proved the effectiveness of this model. Drug screening further discovered a potential drug candidate, α-lipoic acid, which can effectively alleviate the symptoms of CRS-3 through its antioxidant function. Accordingly, we established a new ARF model of zebrafish, which laid a foundation for large-scale screening of new therapeutic drugs for its complications.


Subject(s)
Acute Kidney Injury/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Drug Evaluation, Preclinical , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Animals, Genetically Modified , Cardio-Renal Syndrome/drug therapy , Cardio-Renal Syndrome/etiology , Cardiovascular Diseases/pathology , Digoxin/pharmacology , Digoxin/therapeutic use , Disease Models, Animal , Enalapril/pharmacology , Enalapril/therapeutic use , Epithelial Cells/pathology , Humans , Kidney Tubules/pathology , Kidney Tubules/physiopathology , Larva/physiology , Metronidazole , Regional Blood Flow/drug effects , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Treatment Outcome , Zebrafish
20.
Obes Sci Pract ; 7(3): 339-345, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34123401

ABSTRACT

Obesity is considered as a risk factor for COVID-19 with insulin resistance and increased production of inflammatory cytokines as likely mechanisms. Glucagon-like peptide-1 (GLP-1) agonists and inhaled nitric oxide are proposed therapeutic approaches to treat COVID-19 because of their broad anti-inflammatory effects. One approach that might augment GLP-1 levels would be dietary supplementation with L-arginine. Beyond cytokines, multiple studies have started to investigate the relationship between new-onset diabetes and COVID-19. In a posthoc analysis of a randomized, placebo-controlled human clinical trial of L-arginine supplementation in people with asthma and predominantly with obesity, the results showed that 12 weeks of continuous L-arginine supplementation significantly decreased the level of IL-21 (p = 0.02) and increased the level of insulin (p = 0.02). A high arginine level and arginine/ADMA ratio were significantly associated with lower CCL-20 and TNF-α levels. The study also showed that L-arginine supplementation reduces cytokine levels and improves insulin deficiency or resistance, both are two big risk factors for COVID-19 severity and mortality. Given its safety profile and ease of accessibility, L-arginine is an attractive potential therapeutic option that allows for a cost-effective way to improve outcomes in patients. An expedition of further investigation or clinical trials to test these hypotheses is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...