Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
BMC Med Genomics ; 16(1): 102, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179331

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory disease that might induce severe cardiovascular events, such as myocardial infarction and cerebral infarction. These risk factors in the pathogenesis of AS remain uncertain and further research is needed. This study aims to explore the potential molecular mechanisms of AS by bioinformatics analyses. METHODS: GSE100927 gene expression profiles, including 69 AS samples and 35 healthy controls, were downloaded from Gene Expression Omnibus database and indenfied for key genes and pathways in AS. RESULTS: A total of 443 differentially expressed genes (DEGs) between control and AS were identified, including 323 down-regulated genes and 120 up-regulated genes. The Gene ontology terms enriched by the up-regulated DEGs were associated with the regulation of leukocyte activation, endocytic vesicle, and cytokine binding, while the down-regulated DEGs were associated with negative regulation of cell growth, extracellular matrix, and G protein-coupled receptor binding. KEGG pathway analysis showed that the up-regulated DEGs were enriched in Osteoclast differentiation and Phagosome, while the down-regulated DEGs were enriched in vascular smooth muscle contraction and cGMP-PKG signaling pathway. Using the modular analysis of Cytoscape, we identified 3 modules mainly involved in Leishmaniasis and Osteoclast differentiation. The GSEA analysis showed the up-regulated gene sets were enriched in the ribosome, ascorbated metabolism, and propanoate metabolism. The LASSO Cox regression analysis showed the top 3 genes were TNF, CX3CR1, and COL1R1. Finally, we found these immune cells were conferred significantly higher infiltrating density in the AS group. CONCLUSIONS: Our data showed the pathway of Osteoclast differentiation and Leishmaniasis was involved in the AS process and we developed a three-gene model base on the prognosis of AS. These findings clarified the gene regulatory network of AS and may provide a novel target for AS therapy.


Subject(s)
Atherosclerosis , Gene Expression Profiling , Humans , Transcriptome , Gene Regulatory Networks , Atherosclerosis/genetics , Computational Biology
2.
Front Biosci (Landmark Ed) ; 28(3): 54, 2023 03 16.
Article in English | MEDLINE | ID: mdl-37005748

ABSTRACT

BACKGROUND: Neuromedin B (NMB) is a neuropeptide that plays a key role in many physiological processes and is involved in the pathology of various diseases. Increased levels of NMB have been reported in solid tumors. Therefore, we investigated the prognostic value of NMB in glioblastoma (GBM). METHODS: Expression profiles of NMB mRNA were investigated in GBM and normal tissues using data from the cancer genome atlas (TCGA). NMB protein expression was obtained using data from the Human Protein Atlas. Receiver operating characteristic (ROC) curves were evaluated in GBM and normal tissues. The survival effect of NMB in GBM patients was evaluated using the Kaplan-Meier method. Protein-protein interaction networks were constructed using STRING, and the functional enrichment analyses were performed. The relationship between NMB expression and tumor-infiltrating lymphocytes was analyzed using the Tumor Immune Estimation Resource (TIMER) and the Tumor-Immune System Interaction database (TISIDB). RESULTS: NMB was overexpressed in GBM relative to normal biopsy specimens. The ROC analysis showed that the sensitivity and specificity of NMB in GBM were 96.4% and 96.2%, respectively. Kaplan-Meier survival analysis showed that GBM patients with high NMB expression had a better prognosis than those with low NMB expression (16.3 vs. 12.7 months, p = 0.002). Correlation analysis showed that NMB expression was associated with tumor-infiltrating lymphocytes and tumor purity. CONCLUSIONS: High expression of NMB was associated with increased GBM patient survival. Our study indicated that the NMB expression may be a biomarker for prognosis and that NMB may be an immunotherapy target in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/pathology , Neurokinin B , Kaplan-Meier Estimate
3.
Toxicology ; 486: 153432, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36696940

ABSTRACT

Neuroinflammation is one of the important mechanisms of trimethyltin chloride (TMT) central neurotoxicity. Artemisinin (ARS) is a well-known antimalarial drug that also has significant anti-inflammatory effects. Prokineticin 2 (PK2) is a small molecule secreted protein that is widely expressed in the nervous system and plays a key role in the development of neuroinflammation. However, it remains unclear whether ARS can ameliorate neuroinflammation caused by TMT and whether PK2/PKRs signaling pathway plays a part in it. In this research, male Balb/c mice were administered TMT (2.8 mg/kg, i.p.) followed by immunohistochemistry to assess the expression of PK2, PKR1, and PKR2 proteins in the hippocampus. Network pharmacology was used to predict the intersection targets of ARS, central nervous system(CNS) injury and TMT. The neurobehavior of mice was evaluated by behavioral scores. Histopathological damage of the hippocampus was evaluated by HE, Nissl and Electron microscopy. Western blotting was used to identify the expression of synapse-related proteins (PSD95, SYN1, Synaptophysin), PK system-related proteins (PK2, PKR1, PKR2), and inflammation-related proteins (TNF-α, NF-κB p65). Immunohistochemistry showed that TMT resulted in elevated PK2 and PKR2 protein expression in the CA2 and CA3 regions of the hippocampus in mice, while PKR1 protein was not significantly altered. Network pharmacology showed that PK2 could interact with the intersectional targets of ARS, CNS injury, and TMT. ARS remarkably attenuated TMT-induced seizures and hippocampal histological damage. Further studies demonstrated that ARS treatment attenuated TMT-induced hippocampal ultrastructural damage, possibly by increasing the number of rough endoplasmic reticulum and mitochondria as well as upregulating the levels of synapse-associated proteins (PSD95, SYN1, Synaptophysin). Western blotting results revealed that ARS downregulated TMT-induced TNF-α and NF-κB p65 protein levels. In addition, ARS also decreased TMT-induced protein expression of PK2 and PKR2 in the mouse hippocampus, but had no significant effect on PKR1 protein expression. Our results suggested that ARS ameliorated TMT-induced abnormal neural behavior and hippocampal injury, which may be achieved by regulating PK2/PKRs inflammatory pathway and ameliorating synaptic injury. Therefore, we suggest that PK2/PKRs pathway may be involved in TMT neurotoxicity and ARS may be a promising drug that can relieve TMT neurotoxicity.


Subject(s)
Artemisinins , Neuropeptides , Trimethyltin Compounds , Mice , Animals , Male , Synaptophysin , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Hippocampus , Trimethyltin Compounds/toxicity , Artemisinins/pharmacology , Artemisinins/metabolism
4.
Mol Neurobiol ; 60(2): 524-544, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36319905

ABSTRACT

Accumulating clinical and epidemiological studies indicate that learning and memory impairment is more prevalent among people with diabetes mellitus (DM). PTP1B is a member of protein tyrosine phosphatase family and participates in a variety of pathophysiological effects including inflammatory, insulin signaling pathway, and learning and memory. This study was aimed to investigate the effects of CA, a specific inhibitor of PTP1B, on spatial learning and memory impairment in diabetic mice caused by high-fat diet and injection of streptozotocin. We found that the protein expressions of PTP1B increased in hippocampal CA1, CA3, and PFC regions of diabetic mice. Network pharmacology results showed that PTP1B might be one of the key targets between diabetes and cognitive dysfunction, and CA might alleviate DM-induced cognitive dysfunction. Animal experiments showed that CA ameliorated DM-induced spatial learning and memory impairment, and improved glucose and lipid metabolic disorders. Moreover, administration of CA alleviated hippocampal structure damage and enhanced the expressions of synaptic proteins, including PSD-95, SYN-1, and SYP in diabetic mice. Furthermore, CA treatment not only significantly down-regulated the expressions of PTP1B and NLRP3 inflammatory related proteins (NLRP3, ASC, Caspase-1, COX-2, IL-1ß, and TNF-α), but also significantly up-regulated the expressions of insulin signaling pathway-related proteins (p-IRS1, p-PI3K, p-AKT, and p-GSK-3ß) in diabetic mice. Taken together, these results suggested that PTP1B might be a targeted strategy to rescue learning and memory deficits in DM, possibly through inhibition of NLRP3 inflammasome and regulation of insulin signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycogen Synthase Kinase 3 beta , Insulin/metabolism , Memory Disorders/complications , Memory Disorders/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , Spatial Learning
5.
Front Public Health ; 10: 991306, 2022.
Article in English | MEDLINE | ID: mdl-36324461

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is one of the most common causes of bacterial meningitis worldwide. The purpose of this study was to investigate the clinical and microbiological characteristics of K. pneumoniae meningitis, as well as the association of antimicrobial resistance, virulence, and patient prognosis. The clinical data of patients with K. pneumoniae meningitis from 2014 to 2020 in a tertiary teaching hospital were retrospectively evaluated. Antimicrobial susceptibility profiles were performed by the agar dilution method and broth microdilution method. The isolates were detected for virulence-related genes, resistance genes, capsular serotypes, and molecular subtypes. A total of 36 individuals with K. pneumoniae meningitis were included in the study, accounting for 11.3% (36/318) of all cases of bacterial meningitis. Of the 36 available isolates, K1, K47, and K64 were tied for the most frequent serotype (7/36, 19.4%). MLST analysis classified the isolates into 14 distinct STs, with ST11 being the most common (14/36, 38.9%). Carbapenem resistance was found in 44.4% (16/36) of the isolates, while hypervirulent K. pneumoniae (HvKP) was found in 66.7% (24/36) of the isolates. The isolates of hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP) were then confirmed to be 36.1% (13/36). Importantly, individuals with meningitis caused by Hv-CRKP had a statistically significant higher mortality than the other patients (92.3%, 12/13 vs. 56.5%, 13/23; P < 0.05). The high percentage and fatality of K. pneumoniae-caused meningitis, particularly in Hv-CRKP strains, should be of significant concern. More effective surveillance and treatment solutions will be required in future to avoid the spread of these life-threatening infections over the world.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Meningitis , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Multilocus Sequence Typing , Retrospective Studies , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/therapeutic use , China/epidemiology , Meningitis/drug therapy
6.
Infect Drug Resist ; 15: 4213-4227, 2022.
Article in English | MEDLINE | ID: mdl-35959145

ABSTRACT

Introduction: Globally, Pseudomonas aeruginosa (PA) is emerging as a predominant nosocomial pathogen that often induces aggressive and even deadly infections. Pseudomonas type III repressor A (PtrA) can be activated specifically by copper ions and interacts with type-III transcriptional activator ExsA. This study aims to provide insight into the PtrA-mediated regulation of the pathogenicity and antibiotics resistance of PA. Methods and Results: The results of transcriptome sequencing analyses and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) showed that PtrA plays a dual regulatory role in the virulence systems of PA: negatively regulates the type-III secretion system (T3SS) and positively regulates the quorum-sensing system (QS). The ptrA mutant attenuated extracellular virulence related to QS like pyocyanin, elastase, rhamnolipids, proteolytic activity, and biofilm production. According to adhesion and invasion experiments, PtrA can not only contribute to the adhesiveness but also the invasive of PA. Moreover, the PtrA-mediated regulation of PA pathogenicity was determined both in vivo and in vitro through cytotoxicity and Galleria mellonella survival experiments. In addition, apart from virulence, PtrA was found to influence the carbapenems resistance of PA. After deleting ptrA, the minimum inhibitory concentration (MIC) of carbapenems antibiotics was decreased by 2-fold, while a 2-8 fold increase was noted for the complemented strain. Conclusion: Our findings establish that PtrA exerts a regulatory role in both pathogenicity and carbapenems resistance of PA. This work may shed light on a novel target for the clinical treatment of PA.

7.
Front Microbiol ; 13: 956044, 2022.
Article in English | MEDLINE | ID: mdl-35903471

ABSTRACT

Ceftazidime/avibactam (CZA) is an alternative antibiotic used for the treatment of infections caused by carbapenem-resistant Enterobacterales (CRE). However, the CZA-resistant CRE strains have been detected worldwide. Therefore, it is critical to screen CZA-resistant CRE strains in colonized patients or a specific population so as to rapidly implement infection control measures to limit their transmission. In this study, we developed a Salmonella-Shigella (SS) CZA-selective medium and assessed its performance to screen for clinical CZA-resistant CRE isolates in both pure-strain specimens and stool samples. A total of 150 non-duplicated isolates, including 75 CZA-susceptible and 75 CZA-resistant CRE pathogens, were tested by using the broth microdilution method and the SS CZA medium, respectively. The bacterial suspensions were serially diluted in the SS CZA medium, which showed excellent screening performance in both pure CZA-resistant CRE strain and the stool samples with the lowest detection limit of 101-102 and 101-103 CFU/ml, respectively. Notably, none of the susceptible isolates showed growth even at the highest dilution concentration of 108 CFU/ml. Most importantly, the SS CZA medium demonstrated excellent performance in screening simulated clinical polymicrobial specimens. Moreover, its screening performance was unaffected by the different resistance determinants for tested isolates. Cumulatively, our data suggest that the SS CZA medium can be used as a promising selective medium to screen CZA-resistant CRE, irrespective of their resistance mechanisms.

8.
Front Pharmacol ; 13: 850053, 2022.
Article in English | MEDLINE | ID: mdl-35747748

ABSTRACT

Background: Doxorubicin (DOX) is a potent chemotherapeutic agent with limited usage due to its cumulative cardiotoxicity. The Na+/H+ exchanger isoform 1 (NHE1) is a known regulator of oxidative stress, inflammation, and apoptosis. The present study was designed to investigate the possible protective effect of cariporide (CAR), a selective inhibitor of NHE1, against DOX-induced cardiotoxicity in rats. Methods: Male Sprague-Dawley rats were intraperitoneally injected with DOX to induce cardiac toxicity and CAR was given orally for treatment. The injured H9c2 cell model was established by incubation with DOX in vitro. Echocardiography, as well as morphological and ultra-structural examination were performed to evaluate cardiac function and histopathological changes. The biochemical parameters were determined according to the manufacturer's guideline of kits. ROS were assessed by using an immunofluorescence assay. The serum levels and mRNA expressions of inflammatory cytokines were measured by using ELISA or qRT-PCR. Cardiac cell apoptosis and H9c2 cell viability were tested by TUNEL or MTT method respectively. The protein expressions of Cleaved-Caspase-3, Bcl-2, Bax, Akt, GSK-3ß, and Sirt1 were detected by western blot. Results: Treatment with CAR protected against DOX-induced body weight changes, impairment of heart function, leakage of cardiac enzymes, and heart histopathological damage. In addition, CAR significantly attenuated oxidative stress and inhibited the levels and mRNA expressions of inflammatory cytokines (TNF-α, IL-6, IL-18, and IL-1ß), which were increased by DOX treatment. Moreover, CAR significantly suppressed myocardial apoptosis and Cleaved-Caspase-3 protein expression induced by DOX, which was in agreement with the increased Bcl-2/Bax ratio. Also, DOX suppressed phosphorylation of Akt and GSK-3ß, which was significantly reversed by administration of CAR. Furthermore, CAR treatment prevented DOX-induced down-regulation of Sirt1 at the protein level in vitro and in vivo. Finally, Sirt1 inhibitor reversed the protective effects of CAR, as evidenced by reduced cell viability and Sirt1 protein expression in vitro. Conclusion: Taken together, we provide evidence for the first time in the current study that CAR exerts potent protective effects against DOX-induced cardiotoxicity in rats. This cardio-protective effect is attributed to suppressing oxidative stress, inflammation, and apoptosis, at least in part, through regulation of Akt/GSK-3ß and Sirt1 signaling pathway, which has not been reported to date.

9.
Diagn Microbiol Infect Dis ; 103(3): 115712, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35613493

ABSTRACT

The aim of this study was to investigate in vitro activity of imipenem-relebactam alone and in combination with fosfomycin against carbapenem-resistant Gram-negative pathogens. A total of 100 Gram-negative bacteria resistant to carbapenem were collected. Among collected 25 carbapenem-resistant Klebsiella pneumoniae strains, 24 (96%) were KPC producers and none of them displayed NDM-1, NDM-5, and IMP carbapenemase. Among 25 carbapenem-resistant Escherichia coli strains, 3(12%), 1(4%), 17(68%), 25(100%) and 20(80%) harbored KPC, NDM-1, NDM-5, ESBLs, and membrane porin OmpC or OmpF mutations, respectively. Among all the carbapenem-resistant strains, 40% (40/100) were resistant to imipenem-relebactam. The FICI revealed the synergistic (60%, 6/10) and additive (40%, 4/10) effects of imipenem-relebactam in combination with fosfomycin, wherein synergistic activity was found against all tested Klebsiella pneumoniae and Acinetobacter baumannii. Imipenem-relebactam may be a new alternative for carbapenem-resistant Gram-negative pathogens infections and the combination of imipenem-relebactam and fosfomycin warrants further exploration.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Fosfomycin , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Escherichia coli , Fosfomycin/pharmacology , Humans , Imipenem/pharmacology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics
10.
Int J Antimicrob Agents ; 60(1): 106605, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35577258

ABSTRACT

Chlorhexidine is used widely to prevent the spread of bacteria in the hospital environment. However, bacteria are increasingly becoming tolerant to chlorhexidine. Here we investigated clinical characteristics, tolerance mechanisms, and molecular epidemiology of chlorhexidine-tolerant Pseudomonas aeruginosa. According to the proposed epidemiological cut-off value to determine chlorhexidine tolerance (50 µg/mL) in P. aeruginosa, 32 chlorhexidine-tolerant isolates were detected from 294 P. aeruginosa isolates, which accounted for 10.9%. Our results indicated MICs of chlorhexidine-tolerant strains were 64 µg/mL. Patient's data showed chlorhexidine tolerance was associated with following factors: hospital length of stay, ICU admission, length of stay in ICU, invasive procedure, duration of mechanical ventilation, chlorhexidine usage, and occurrence of nosocomial pneumonia. Tolerance mechanisms were analyzed by efflux pump inhibition test, qRT-PCR, and serial passage experiment. Increased expression of efflux pump genes mexA, mexC, mexE and mexX, and decreased expression of oprD were observed in chlorhexidine-tolerant and chlorhexidine-induced strains, which suggested that hyperexpression of Mex-Opr efflux pump was the main mechanism. Moreover, serial passage experiment found chlorhexidine-induced strains showed decreased susceptibility to tested antibiotics, which illustrated that long-term exposure of P. aeruginosa to chlorhexidine could result in multidrug-resistant (MDR) or cross-resistance phenotypes. MLST and PFGE analysis demonstrated the homology of 32 chlorhexidine-tolerant strains was low and no obvious clonal transmission was observed. We comprehensively investigated the development and molecular mechanisms of chlorhexidine-tolerant P. aeruginosa, which revealed that the control and surveillance of chlorhexidine tolerance should be more strict. Moreover, it seems to make sense to avoid the continuous or unreasonable application of chlorhexidine in hospital settings.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Chlorhexidine/pharmacology , Hospitals, Teaching , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology
11.
J Glob Antimicrob Resist ; 28: 168-173, 2022 03.
Article in English | MEDLINE | ID: mdl-35038616

ABSTRACT

OBJECTIVES: This study investigated the underlying mechanism of the evolution of tigecycline resistance during treatment in a patient infected with Klebsiella pneumoniae harbouring blaKPC-2. METHODS: A total of seven clonal K. pneumoniae strains were continuously isolated from a patient during hospitalisation. Antimicrobial resistance in the strains was determined by antimicrobial susceptibility testing. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to explore the homology of the isolates. Whole-genome shotgun (WGS) analysis and cloning experiments were used to investigate the underlying mechanism of the evolution of tigecycline resistance. RESULTS: All of the isolates had a minimum inhibitory concentration (MIC) for tigecycline of 4 µg/mL, except strain FK6768 that had a MIC of 32 µg/mL. Carbapenem-resistant K. pneumoniae strains (FK6614, FK6768 and FK6809) were consecutively isolated from faeces at different times. Antimicrobial susceptibility testing indicated that tigecycline resistance increased in FK6768 and subsequently decreased in FK6809, which attracted our attention. WGS and further bioinformatics analysis showed a homology for the three faecal isolates of >99%. The blaKPC-2 carbapenemase gene and a tet(A) mutation were found in tigecycline-resistant isolate FK6768. Subsequent cloning experiments confirmed the contribution of a tet(A) variant to reduced tigecycline susceptibility. CONCLUSION: Here we report a K. pneumoniae isolate carrying both tet(A) mutation and the blaKPC-2 gene, which led to increased tigecycline resistance during tigecycline treatment. This is the first report describing tigecycline resistance of K. pneumoniae first increasing and subsequently decreasing in vivo.


Subject(s)
Anti-Infective Agents , Carbapenem-Resistant Enterobacteriaceae , Humans , Klebsiella pneumoniae , Multilocus Sequence Typing , Tigecycline/pharmacology
12.
Neurochem Int ; 154: 105289, 2022 03.
Article in English | MEDLINE | ID: mdl-35074478

ABSTRACT

Clinical and epidemiological studies indicate that diabetic cognitive impairment often occurs in diabetes mellitus patients. Matrine (Mat), an active component of Sophora flavescens Ait root extracts, has widely pharmacological activities including anti-tumor, anti-diabetes, cardioprotective and neuroprotective effects. The present study was designed to elucidate the possibly neuroprotective effects of Mat against diabetic spatial learning and memory impairment caused by high-fat diet and streptozotocin injection in mice. The results showed that Mat treatment significantly ameliorated fasting blood glucose level, impaired glucose tolerance, and lipid metabolism disorder in diabetic mice. In addition, diabetic mice exhibited spatial learning and memory impairment in the Morris water maze test, which could be attenuated by Mat treatment. Moreover, administration of Mat remarkably alleviated histological damage in diabetic hippocampus. Also, further investigations showed that Mat treatment abated endoplasmic reticulum stress induced hippocampal ultra-structure injury as evidenced by increasing the numbers of rough endoplasmic reticulum and mitochondria, as well as down-regulating endoplasmic reticulum stress related protein levels (GRP78, CHOP, ATF6 and Caspase-12). Furthermore, administration of Mat enhanced hippocampal protein expressions of PK2, PKR1 and PKR2, which decreased significantly in diabetic mice. Collectively, these findings suggested that Mat could ameliorate diabetes-induced spatial learning and memory impairment, possibly by alleviating ER stress, and partly through modulation of PK2/PKRs pathway.


Subject(s)
Diabetes Mellitus, Experimental , Endoplasmic Reticulum Stress , Alkaloids , Animals , Apoptosis , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hippocampus/metabolism , Humans , Mice , Quinolizines/metabolism , Quinolizines/pharmacology , Quinolizines/therapeutic use , Spatial Learning , Matrines
13.
Front Chem ; 9: 795150, 2021.
Article in English | MEDLINE | ID: mdl-34900948

ABSTRACT

Colistin is being considered as "the last ditch" treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.

14.
Front Public Health ; 9: 783124, 2021.
Article in English | MEDLINE | ID: mdl-34926395

ABSTRACT

Carbapenem-resistant Klebsiella pneumonia (CRKP) infections has become a concerning threat. However, knowledge regarding the characteristics of intestinal CRKP isolates is limited. This study aimed to investigate and compare the clinical, virulence and molecular epidemiological characteristics of intestinal colonization and extraintestinal infections CRKP strains. The clinical characteristics were investigated retrospectively. Polymerase chain reaction was used to investigate the capsular serotype, virulence genes and carbapenemase genes. Capsular polysaccharide quantification assay, serum resistance assay, biofilm formation assay, and infection model of Galleria mellonella larvae were performed to compare the virulence and pathogenicity. Besides, multilocus-sequence-typing (MLST) and pulsed-field-gel-electrophoresis (PFGE) were conducted to explore the homology of intestinal CRKP isolates. A total of 54 intestinal CRKP isolates were included. The main capsular serotypes were K14, K64, and K19. C-reactive protein and the proportion of ICU isolation of the infection group were significantly higher than that of the colonization group (P < 0.05). The carrier rates of various virulence genes of CRKP in the infection group were mostly higher than those in the colonization group, wherein the carrier rates of peg-344 and rmpA were significantly different (P < 0.05). There was no significant difference in capsular polysaccharides, antiserum ability, biofilm formation ability between the two group (P > 0.05), but the lethality of the infection group to Galleria mellonella was significantly higher than that of the colonization group (P < 0.05). The MLST categorized the 54 isolates into 13 different sequence types. PFGE revealed that homology among the 54 CRKP strains was <80%. This study suggested that the CRKP strains in the infection group had higher virulence than those in the colonization group. The development of CRKP isolates colonizing in the intestine should be addressed in future clinical surveillance.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Humans , Intestines , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Retrospective Studies , Virulence/genetics
15.
Infect Drug Resist ; 14: 4395-4407, 2021.
Article in English | MEDLINE | ID: mdl-34729016

ABSTRACT

BACKGROUND: OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) has the potential to become the "third epidemic" of carbapenem-resistant Klebsiella strain after KPC-2 and NDM in China. We investigated the first outbreak of CRKP in the First Affiliated Hospital of Wenzhou Medical University. METHODS: We collected 610 clinical isolates of CRKP from the First Affiliated Hospital of Wenzhou Medical University between January 2019 and September 2020 and screened them by Polymerase Chain Reaction (PCR). The multilocus sequence typing and pulsed-field gel electrophoresis were used to determine the genetic relatedness of the strains. The antimicrobial susceptibility test was performed to determine the drug resistance of the clinical isolates. The molecular mechanism underlying carbapenem resistance was elucidated by performing PCR and conjugation experiments. The virulence potential of the strains was determined by the string test, detection of virulence-associated genes and capsular serotypes, and Galleria mellonella larval infection model. RESULTS: Between September 2019 and May 2020, 26 OXA-232-producing CRKP were obtained from 12 patients in our hospital. Ten patients were hospitalized in the intensive care units (ICU) and the overall mortality of the inpatients involved in the outbreak was 50% (6/12). Epidemiological investigations reported that all the OXA-232-producing CRKP strains belonged to the sequence type ST15 and can be clonally transmitted among the inpatients in the ICU. All the strains had low virulence and were resistant to commonly used clinical antibiotics except for ceftazidime/avibactam, colistin, and tigecycline. The OXA-232-producing CRKP was sensitive to triclosan and chlorhexidine, and its eradication from our hospital can be achieved by the use of disinfectants in the ICU. CONCLUSION: In our study, OXA-232-producing CRKP isolates appeared to be clonally transmitted and the sequence type ST15 was responsible for the outbreak. Therefore, effective measurements for the infection control of CRKP are urgently needed to prevent its epidemic in the nearby region in the future.

16.
Front Microbiol ; 12: 672943, 2021.
Article in English | MEDLINE | ID: mdl-34149659

ABSTRACT

Chinese dragon's blood (CDB), a characteristic red resin, is an important traditional Chinese medicine (TCM), and empiric therapy of infected wounds with CDB is performed in clinical settings. For the first time, we herein report the antibacterial and anti-biofilm efficacy of CDB against Staphylococcus aureus (S. aureus). Antimicrobial susceptibility testing, growth curve assay, time-kill curve assay, crystal violet biofilm assay, scanning electron microscope (SEM) analysis, cell membrane tests, and quantitative real-time polymerase chain reaction (qRT-PCR) were used for this purpose. The results suggested that the minimum inhibitory concentration (MIC) values of CDB against S. aureus ranged from 32 to 128 µg/mL. Growth curves and time-kill curves confirmed that CDB could inhibit the growth of S. aureus. The biofilm formation ability and the expression levels of saeR, saeS, and hla of S. aureus in the presence and absence of CDB were statistically significant (P < 0.01). The results of SEM analysis and cell membrane tests revealed that exposure to CDB had some destructive effects on S. aureus cells. In conclusion, CDB exhibits positive antibacterial activity against S. aureus. Moreover, CDB could reduce the biofilm formation and the virulence factors of S. aureus by downregulating the expression levels of saeR, saeS, and hla genes. These findings indicated that CDB has immense potential to serve as a viable alternative for the treatment of infected wounds caused by S. aureus in clinical settings.

17.
Infect Drug Resist ; 14: 2143-2154, 2021.
Article in English | MEDLINE | ID: mdl-34135604

ABSTRACT

PURPOSE: The emergence of colistin resistance among Gram-negative bacteria (GNB) poses a serious public health threat. Therefore, it is necessary to enhance the antibacterial activity of colistin through the combination with other drugs. In this study, we demonstrated the synergistic activity and the possible synergy mechanism of colistin with PFK-158 against colistin-resistant GNB, including non-fermenting bacteria and Enterobacteriaceae. PATIENTS AND METHODS: Thirty-one colistin-resistant GNB, including Pseudomonas aeruginosa (n = 9), Acinetobacter baumannii (n = 5), Escherichia coli (n = 8) and Klebsiella pneumoniae (n = 9), were collected as the experimental strains and the minimum inhibitory concentrations (MICs) of colistin, other routine antimicrobial agents and PFK-158 against all strains were determined by the broth microdilution method. The synergistic activity of colistin with PFK-158 was assessed by the checkerboard assay and time-kill assay. The biofilm formation assay and scanning electron microscopy were used to demonstrate the biofilm formation effect of colistin with PFK-158 against colistin-resistant GNB. RESULTS: The results of the checkerboard assay showed that when colistin was used in combination with PFK-158, synergistic activity was observed against the 31 colistin-resistant GNB. The time-kill assay presented a significant killing activity of colistin with PFK-158 against the 9 colistin-resistant GNB selected randomly, including Pseudomonas aeruginosa (n = 6), Acinetobacter baumannii (n = 1), Escherichia coli (n = 1), and Klebsiella pneumoniae (n = 1). The biofilm formation assay and scanning electron microscopjihy showed that colistin with PFK-158 can effectively suppress the formation of biofilm and reduce the cell arrangement density of biofilm against most experimental strains. CONCLUSION: The results of the performed experiments suggest that the combination of colistin and PFK-158 may be a potential new choice as a new antibiofilm group for the treatment of infections caused by the colistin-resistant GNB.

18.
Eur J Clin Microbiol Infect Dis ; 40(12): 2651-2656, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34097170

ABSTRACT

Modifying enzyme-CrpP and its variants reduced the MICs of fluoroquinolones in Pseudomonas aeruginosa. This study investigated the dissemination and functional characteristics of CrpP-like in P. aeruginosa from China. The positive rate of crpP-like genes in 228 P. aeruginosa was 25.4% (58/228), and 6 new crpP-like genes were determined. Transformation experiments showed that CrpP-like had a low effect on CIP and LEV susceptibility. The genetic of crpP-positive was diverse. Furthermore, the mean expression level of crpP was no statistical difference between fluoroquinolone-susceptible and -resistant group (P > 0.05). CrpP-like may not play a significant role in fluoroquinolone resistance in P. aeruginosa.


Subject(s)
Bacterial Proteins/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , China , Ciprofloxacin/pharmacology , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification
19.
Int J Infect Dis ; 106: 415-420, 2021 May.
Article in English | MEDLINE | ID: mdl-33864920

ABSTRACT

OBJECTIVES: This study aimed to evaluate the performance of the NitroSpeed-Carba NP test for detecting carbapenemases in the clinical strains of Enterobacterales and Pseudomonas aeruginosa (P. aeruginosa), and analyze its advantages and limitations. METHODS: The antimicrobial susceptibility tests were performed according to the agar dilution method. Using the modified carbapenemase inactivation method (mCIM), polymerase chain reaction (PCR), and sequencing, the production of carbapenemase and the prevalence of genes were studied. The NitroSpeed-Carba NP test was performed to detect different types of carbapenemases in Enterobacterales and P. aeruginosa. The results of PCR and sequencing were used as the gold standard. RESULTS: Among 144 carbapenemase-producing and 54 carbapenemase-negative strains of Enterobacterales and P. aeruginosa, the NitroSpeed-Carba NP test correctly detected 143 of 144 carbapenemase producers and 51 of 54 non-carbapenemase producers. Moreover, the sensitivity and specificity of all tested isolates were 99.31% and 94.44%, respectively (99.28% and 92.86% for Enterobacterales; 100% and 100% for P. aeruginosa). The sensitivity was 100% for class A (56 of 56), 100% for class B (60 of 60), and 100% for class D (27 of 27). CONCLUSIONS: The results suggest that NitroSpeed-Carba NP test is a simple and valuable assay that could be used as a rapid and stable detection method to identify the carbapenemases in Enterobacterales and P. aeruginosa strains.


Subject(s)
Bacterial Proteins/metabolism , Enterobacteriaceae/enzymology , Enzyme Assays/methods , Pseudomonas aeruginosa/enzymology , beta-Lactamases/metabolism , Humans , Limit of Detection , Time Factors
20.
Antimicrob Resist Infect Control ; 10(1): 16, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33461617

ABSTRACT

BACKGROUND: Bloodstream infection (BSI) caused by multidrug-resistant Acinetobacter baumannii (MDR-AB) has been increasingly observed among hospitalized patients. The following study analyzed the epidemiology and microbiological characteristics of MDR-AB, as well as the clinical features, antimicrobial treatments, and outcomes in patients over a six years period in China. METHODS: This retrospective study was conducted in a large tertiary hospital in China between January 2013 and December 2018. The clinical and microbiological data of all consecutive hospitalized patients with MDR-AB induced bloodstream infection were included and analyzed. RESULTS: A total of 108 BSI episodes were analyzed. All MDR isolates belonged to ST2, a sequence type that has spread all over the world. Overall, ST2 strains showed strong biofilm formation ability, high serum resistance, and high pathogenicity. As for the clinical characteristics of the patient, 30-day mortality was 69.4% (75/108). The three main risk factors included mechanical ventilation, intensive care unit (ICU) stay, and thrombocytopenia; three protective factors included a change of antimicrobial regimen within 48 h after positive blood culture, use of the antibacterial agent combination, and more inpatient days. The most effective antibacterial regimen was the combination of cefoperazone/sulbactam and tigecycline. CONCLUSIONS: BSI caused by ST2 A.baumannii represents a difficult challenge for physicians, considering the high mortality associated with this infection. The combination of cefoperazone/sulbactam and tigecycline may be an effective treatment option.


Subject(s)
Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Sepsis/drug therapy , Virulence , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , Cefoperazone , China/epidemiology , Cross Infection/drug therapy , Cross Infection/epidemiology , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Microbial Sensitivity Tests , Middle Aged , Respiration, Artificial , Retrospective Studies , Risk Factors , Sepsis/microbiology , Sulbactam , Thrombocytopenia , Tigecycline , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...