Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Food Chem ; 454: 139759, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38805926

ABSTRACT

A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 µg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 µg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.

2.
Article in English | MEDLINE | ID: mdl-38758500

ABSTRACT

Due to the unique physiological barriers within the lungs, there are considerable challenges in developing drug delivery systems enabling prolonged drug exposure to respiratory epithelial cells. Here, we report a PulmoSphere-based dry powder technology that incorporates a drug-phospholipid complex to promote intracellular retention of dehydroandrographolide succinate (DAS) in respiratory epithelial cells following pulmonary delivery. The DAS-phospholipid complex has the ability to self-assemble into nanoparticles. After spray-drying to produce PulmoSphere microparticles loaded with the drug-phospholipid complex, the rehydrated microparticles discharge the phospholipid complex without altering its physicochemical properties. The microparticles containing the DAS-phospholipid complex exhibit remarkable aerodynamic properties with a fine particle fraction of ∼ 60% and a mass median aerodynamic diameter of ∼ 2.3 µm. These properties facilitate deposition in the alveolar region. In vitro cell culture and lung tissue explants experiments reveal that the drug-phospholipid complex prolongs intracellular residence time and lung tissue retention due to the slow intracellular disassociation of drug from the complex. Once deposited in the lungs, the DAS-phospholipid complex loaded microparticles increase and extend drug exposure to the lung tissues and the immune cells compared to the free DAS counterpart. The improved drug exposure to airway epithelial cells, but not immune cells, is related to a prolonged duration of pulmonary anti-inflammation at decreased doses in a mouse model of acute lung injury induced by lipopolysaccharide. Overall, the phospholipid complex loaded microparticles present a promising approach for improved treatment of respiratory diseases, e.g. pneumonia and acute respiratory distress syndrome.

3.
J Ethnopharmacol ; 326: 117992, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38428654

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sleep plays a critical role in several physiologic processes, and sleep disorders increase the risk of depression, dementia, stroke, cancer, and other diseases. Stress is one of the main causes of sleep disorders. Ginseng Radix et Rhizoma and Polygalae Radix have been reported to have effects of calming the mind and intensifying intelligence in Chinese Pharmacopoeia. Traditional Chinese medicine prescriptions composed of Ginseng Radix et Rhizoma and Polygalae Radix (Shen Yuan, SY) are commonly used to treat insomnia, depression, and other psychiatric disorders in clinical practice. Unfortunately, the underlying mechanisms of the SY extract's effect on sleep are still unknown. AIM OF THE STUDY: This study aimed to investigate the hypnotic effect of the SY extract in normal mice and mice with chronic restraint stress (CRS)-induced sleep disorders and elucidate the underlying mechanisms. MATERIALS AND METHODS: The SY extract (0.5 and 1.0 g/kg) was intragastrically administered to normal mice for 1, 14, and 28 days and to CRS-treated mice for 28 days. The open field test (OFT) and pentobarbital sodium-induced sleep test (PST) were used to evaluate the hypnotic effect of the SY extract. Liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay were utilized to detect the levels of neurotransmitters and hormones. Molecular changes at the mRNA and protein levels were determined using real-time quantitative polymerase chain reaction and Western blot analysis to identify the mechanisms by which SY improves sleep disorders. RESULTS: The SY extract decreased sleep latency and increased sleep duration in normal mice. Similarly, the sleep duration of mice subjected to CRS was increased by administering SY. The SY extract increased the levels of tryptophan (Trp) and 5-hydroxytryptamine (5-HT) and the expression of tryptophan hydroxylase 2 (TPH2) in the cortex of normal mice. The SY extract increased the Trp level, transcription and expression of estrogen receptor beta and TPH2 in the cortex in mice with sleep disorders by decreasing the serum corticosterone level, which promoted the synthesis of 5-HT. Additionally, the SY extract enhanced the expression of arylalkylamine N-acetyltransferase, which increased the melatonin level and upregulated the expressions of melatonin receptor-2 (MT2) and Cryptochrome 1 (Cry1) in the hypothalamus of mice with sleep disorders. CONCLUSIONS: The SY extract exerted a hypnotic effect via the Trp/5-HT/melatonin pathway, which augmented the synthesis of 5-HT and melatonin and further increased the expressions of MT2 and Cry1.


Subject(s)
Drugs, Chinese Herbal , Melatonin , Sleep Initiation and Maintenance Disorders , Humans , Mice , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Tryptophan , Serotonin/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Melatonin/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy
4.
Front Immunol ; 15: 1338096, 2024.
Article in English | MEDLINE | ID: mdl-38495892

ABSTRACT

Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.


Subject(s)
Interferon Type I , Virus Diseases , Humans , Interferon Lambda , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Interferon Type I/metabolism , Epithelium/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
Biomed Pharmacother ; 174: 116456, 2024 May.
Article in English | MEDLINE | ID: mdl-38552441

ABSTRACT

Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40 mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20 mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Bronchoalveolar Lavage Fluid , Diterpenes , Poly I-C , Animals , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Male , Mice , Andrographis/chemistry , Cytokines/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Leukocyte Elastase/metabolism
6.
J Clin Neurosci ; 120: 196-203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277995

ABSTRACT

BACKGROUND: We retrospectively analyzed the effects of low-dose bevacizumab (BEV) combined with temozolomide (TMZ) on health-related quality of life (HRQL) in patients with recurrent high-grade glioma (rHGG). METHODS: A total of 129 patients with rHGG were included in this study. Patients were divided into a combination group and TMZ group based on the treatment they received. The Quality of Life Questionnaire Core 30 (QLQ-C30) and EORTC Brain Cancer Module (QLQ-BN20) were used to evaluate HRQL in all patients before and after treatment. Categorical variables were compared using the chi-squared test. The data for all continuous variables were first tested for a normal distribution. If the data conformed to a normal distribution, a T test was used for comparison. If the data did not conform to a normal distribution, the rank-sum test was used. RESULTS: There were differences in PFS and PFS-6 between the BEV + TMZ and TMZ groups (P<0.05). However, there was no difference in the OS between the two groups (P>0.05). The BEV + TMZ group performed better than the TMZ group in both the QLQ-C30 and QLQ-BN20. In addition, the KPS score was higher in the BEV + TMZ group than in the TMZ group. Steroid doses given were lower in the BEV + TMZ group than in the TMZ group (P < 0.05). CONCLUSIONS: Low-dose BEV + TMZ can relieve the clinical symptoms of rHGG patients, reduce their steroid dose, improve HRQL, and prolong PFS, but does not bear any benefit on OS.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Bevacizumab/therapeutic use , Retrospective Studies , Quality of Life , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Glioma/drug therapy , Temozolomide/therapeutic use , Brain Neoplasms/drug therapy , Steroids/therapeutic use , Glioblastoma/therapy
7.
Microb Cell Fact ; 22(1): 215, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37853389

ABSTRACT

BACKGROUND: Seleno-methylselenocysteine (SeMCys) is an effective component of selenium supplementation with anti-carcinogenic potential that can ameliorate neuropathology and cognitive deficits. In a previous study, a SeMCys producing strain of Bacillus subtilis GBACB was generated by releasing feedback inhibition by overexpression of cysteine-insensitive serine O-acetyltransferase, enhancing the synthesis of S-adenosylmethionine as methyl donor by overexpression of S-adenosylmethionine synthetase, and expressing heterologous selenocysteine methyltransferase. In this study, we aimed to improve GBACB SeMCys production by synthesizing methylmethionine as a donor to methylate selenocysteine and by inhibiting the precursor degradation pathway. RESULTS: First, the performance of three methionine S-methyltransferases that provide methylmethionine as a methyl donor for SeMCys production was determined. Integration of the NmMmt gene into GBACB improved SeMCys production from 20.7 to 687.4 µg/L. Next, the major routes for the degradation of selenocysteine, which is the precursor of SeMCys, were revealed by comparing selenocysteine hyper-accumulating and non-producing strains at the transcriptional level. The iscSB knockout strain doubled SeMCys production. Moreover, deleting sdaA, which is responsible for the degradation of serine as a precursor of selenocysteine, enhanced SeMCys production to 4120.3 µg/L. Finally, the culture conditions in the flasks were optimized. The strain was tolerant to higher selenite content in the liquid medium and the titer of SeMCys reached 7.5 mg/L. CONCLUSIONS: The significance of methylmethionine as a methyl donor for SeMCys production in B. subtilis is reported, and enhanced precursor supply facilitates SeMCys synthesis. The results represent the highest SeMCys production to date and provide insight into Se metabolism.


Subject(s)
Selenium , Vitamin U , Selenocysteine/pharmacology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cysteine/metabolism , Selenium/metabolism
8.
J Sep Sci ; 46(19): e2300108, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37582657

ABSTRACT

In this study, an efficient, sensitive, and convenient magnetic solid-phase extraction method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (MSPE-UHPLC-MS/MS) was developed for the simultaneous determination of 19 succinate dehydrogenase inhibitor fungicide residues in six different food matrices The synthesized tetraethylenepentamine magnetic graphene oxide nanocomposite showed the advantages of good dispersibility, large specific surface area (113.93 m2 /g) and large pore volume (0.25 cm3 /g), making it an ideal succinate dehydrogenase inhibitor pretreatment adsorbent. The MSPE-UHPLC-MS/MS method showed linearity in the range of 5.0-800.0 µg/kg, with a correlation coefficient (R2 ) > 0.99, and a limit of quantification of 5 µg/kg. The recovery of succinate dehydrogenase inhibitor fungicides was in the range of 71.2%-119.4%. The MSPE method is simple, rapid, and efficient, making it an ideal alternative to sample pretreatment in the determination of trace succinate dehydrogenase inhibitor fungicides in complex matrices.

9.
Molecules ; 28(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570807

ABSTRACT

Myelin repair, which is known as remyelination, is critical to the treatment of neurodegenerative diseases, and myelination depends on not only the differentiation of oligodendrocyte precursor cells toward oligodendrocytes but also the renewal of oligodendrocyte precursor cells under pathological conditions. However, simultaneously promoting the differentiation and proliferation of oligodendrocyte precursor cells in lesions remains an unmet challenge and might affect demyelinating diseases. Kidney-tonifying herbs of traditional Chinese medicine (TCM) are effective in improving the symptoms of degenerative patients. However, herbs or compounds with dual functions are unverified. The purpose of this study was to find a kidney-tonifying TCM that synchronously improved the differentiation and proliferation of oligodendrocyte precursor cells under pathological conditions. Compounds with dual functions were screened from highly frequently used kidney-tonifying TCM, and the effects of the obtained compound on remyelination were investigated in an in vitro oligodendrocyte precursor cell differentiation model under pathological conditions and in demyelinating mice in vivo. The compound icaritin, which is an active component of Yin-Yang-Huo (the leaves of Epimedium brevicornu Maxim), demonstrated multiple effects on the remyelination process, including enhancing oligodendrocyte precursor cell proliferation, facilitating the differentiation of neural progenitor cells toward oligodendrocyte precursor cells and further toward oligodendrocytes, and maturation of oligodendrocytes under corticosterone- or glutamate-induced pathological conditions. Importantly, icaritin effectively rescued behavioral functions and increased the formation of myelin in a cuprizone-induced demyelination mouse model. The multiple effects of icaritin make it a promising lead compound for remyelination therapy.


Subject(s)
Demyelinating Diseases , Oligodendrocyte Precursor Cells , Mice , Animals , Oligodendrocyte Precursor Cells/pathology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/pathology , Cell Differentiation , Cell Proliferation , Mice, Inbred C57BL
10.
Front Pharmacol ; 14: 1210393, 2023.
Article in English | MEDLINE | ID: mdl-37408758

ABSTRACT

Stress may trigger sleep disorders and are also risk factors for depression. The study explored the melatonin-related mechanisms of stress-associated sleep disorders on a mouse model of chronic stress by exploring the alteration in sleep architecture, melatonin, and related small molecule levels, transcription and expression of melatonin-related genes as well as proteins. Mice undergoing chronic restraint stress modeling for 28 days showed body weight loss and reduced locomotor activity. Sleep fragmentation, circadian rhythm disorders, and insomnia exhibited in CRS-treated mice formed sleep disorders. Tryptophan and 5-hydroxytryptamine levels were increased in the hypothalamus, while melatonin level was decreased. The transcription and expression of melatonin receptors were reduced, and circadian rhythm related genes were altered. Expression of downstream effectors to melatonin receptors was also affected. These results identified sleep disorders in a mice model of chronic stress. The alteration of melatonin-related pathways was shown to trigger sleep disorders.

11.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047097

ABSTRACT

Pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) induce NLRP3 inflammasome activation, and subsequent formation of active caspase-1 as well as the maturation of interleukin-1ß (IL-1ß) and gasdermin D (GSDMD), mediating the occurrence of pyroptosis and inflammation. Aberrant NLRP3 inflammasome activation causes a variety of diseases. Therefore, the NLRP3 inflammasome pathway is a target for prevention and treatment of relative diseases. Recent studies have suggested that NLRP3 inflammasome activity is closely associated with its post-translational modifications (PTMs). This review focuses on PTMs of the components of the NLRP3 inflammasome and the resultant effects on regulation of its activity to provide references for the exploration of the mechanisms by which the NLRP3 inflammasome is activated and controlled.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Caspase 1/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Processing, Post-Translational , Pyroptosis/physiology , Humans
12.
Appl Microbiol Biotechnol ; 107(9): 2843-2854, 2023 May.
Article in English | MEDLINE | ID: mdl-36941436

ABSTRACT

Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 µg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.


Subject(s)
Bacillus subtilis , Selenocysteine , Selenocysteine/genetics , Selenocysteine/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Serine O-Acetyltransferase/metabolism , Methionine Adenosyltransferase/metabolism , Metabolic Engineering , S-Adenosylmethionine/metabolism
13.
Behav Brain Res ; 440: 114282, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36596395

ABSTRACT

Neuropathic pain is a risk factor for cognitive defects. The ubiquitous expression of AQP4 in astrocytes throughout the central nervous system is altered in the neurodegenerative disease. However, the exact role of AQP4 in cognitive impairment induced by chronic neuropathic pain remains unclear. In this study, we discovered that AQP4 protein and mRNA expression decreased time-dependently in the model of chronic neuropathic pain-induced cognitive disorder. AQP4 overexpression recovered mice from cognitive impairment. Furthermore, the concentration of Aß1-42 in the serum and hippocampus reduced in mice with AQP4 overexpression adeno-associated virus injection. In conclusion, AQP4 in astrocytes is important in mitigating cognitive impairment caused by chronic neuropathic pain.


Subject(s)
Cognitive Dysfunction , Neuralgia , Neurodegenerative Diseases , Mice , Animals , Neurodegenerative Diseases/metabolism , Astrocytes/metabolism , Hippocampus/metabolism , Neuralgia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Aquaporin 4/metabolism , Mice, Knockout
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122285, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36592594

ABSTRACT

We constructed a smartphone-integrated optosensor with inexpensive, reversible, environmental friendly, and rapid adsorption to detect Cu(II) and L-cysteine (L-Cys). The key part of this study was to prepare a red-to-blue colorimetric probe from herbaceous andrographis paniculata using one-pot polymerization at room temperature. When Cu(II) existed, the red fluorescence on the surface of the core-shell probe was quenched, while the blue fluorescence of the core did not respond, because the colorimetric probe interacted with the Cu(II) on the surface of red CDs. After L-Cys added, it interacted with the Cu(II) to strip it from the surface of red CDs, resulting in the recovery of fluorescence response. Under optimal conditions, the detection limits of this method for Cu(II) and L-Cys were 71 nM and 12 nM, respectively. Further, the red-to-blue colorimetric probe was integrated into smartphone with a software application to convert fluorescent color images into specific red (R), green (G), and blue (B) values. The spiked recovery of Cu(II) and L-Cys in lake water was verified the feasibility of the developed optosensors with a recovery of 98.2-101.6 % and 103.3-121.6 %. This method for detecting Cu(II) and L-Cys can not only recognize metal ions from actual samples, but also effectively protect CDs from quenching and restore fluorescence.


Subject(s)
Cysteine , Quantum Dots , Carbon , Spectrometry, Fluorescence/methods , Colorimetry , Biomass , Smartphone , Copper , Fluorescent Dyes
15.
J Fluoresc ; 33(3): 1111-1123, 2023 May.
Article in English | MEDLINE | ID: mdl-36580202

ABSTRACT

Amino- and sulfhydryl- functionalized biomass carbon dots (BCDs) were prepared by one-pot reverse microemulsion for specific recognition of ferric ions (Fe3+) and L-cysteine (L-Cys). Green grapefruit peel was used as the carbon source while aminosilane and mercaptosilane were used as N- and S-supplier. Following the adsorption of Fe3+ on the surfaces of BCDs-NH2 and BCDs-SH, the fluorescence responses was quenched step by step, while adding L-Cys to the BCDs-NH2/Fe3+ system restored the fluorescence. The BCDs-NH2 and BCDs-SH system exhibited extremely low limits of detection for Fe3+ of 3.2 and 3.0 nM, respectively, within a wide linear ranges of 0.006-200 µM and 0.004-200 µM, respectively. The BCDs-NH2/Fe3+ systems were used as an optosensor for L-Cys in the concentration ranges of 0.08-30 and 30-1000 µM with a detection limit of 65 nM. Developed BCDs-NH2 and BCDs-SH were able to respond to Fe3+ in water samples with satisfactory recoveries of 100.1%-103.1% and 94.6%-108.5%, respectively, and the BCDs-NH2/Fe3+ system was also able to respond to BCDs-NH2/Fe3+ in actual lake water samples with recoveries from 87.3% to 98.8%. Meanwhile, The BCDs-NH2 exhibited good photoluminescence and stability, and the with a fluorescence quantum yield was as high as 25%. This work demonstrates the feasibility of using such materials to remove hazardous ions from water and employing the resulting complexes for optosensing in a sustainable manner.


Subject(s)
Cysteine , Quantum Dots , Carbon , Biomass , Water , Ions
16.
J Agric Food Chem ; 70(51): 16188-16200, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36529943

ABSTRACT

Nelumbo nucifera Gaertn. is an important aquatic vegetable, and its dried stamen (Nelumbinis stamen, NS) is a valuable nutraceutical usually used as a herbal tea. Here, we used ultrahigh-performance liquid chromatography (UPLC)-quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography (HPLC) to chemically profile NS and quantify their main constituent flavonoids, respectively. In total, 44 components were identified, including organic acids, flavonoids, monoterpene glycosides, and fatty acids. Experimental mice were induced with fatigue by exposure to chronic restraint stress (CRS) for 8 h daily for 15 days and then treated with an aqueous extract of NS (0.5 and 1 g/kg) via gavage. NS significantly mitigated CRS-induced skeletal muscle dysfunction and fatigue in mice possibly by lowering serum corticosterone levels and restoring Sestrin2 expression in the gastrocnemius to regulate metabolism, preserve mitochondrial homeostasis, and promote antioxidant capacity. These results demonstrate that NS can be used as a nutraceutical or supplement for controlling stress-induced muscle dysfunction and fatigue.


Subject(s)
Corticosterone , Flavonoids , Mice , Animals , Flavonoids/chemistry , Plant Extracts/chemistry , Fatigue/drug therapy , Fatigue/etiology , Muscles/chemistry
17.
Antibiotics (Basel) ; 11(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36358190

ABSTRACT

Escherichia coli is one of the most frequent causes of gastro-intestinal and extra-intestinal diseases in animals and humans. Due to overuse and misuse of antibiotics, recent years have seen a rapidly increasing prevalence of antibiotic-resistant (AR) Escherichia coli globally; particularly, AR E. coli from farm animal-associated sources and its antibiotic resistance genes (ARGs) are becoming a global concern, with clinical negative effects on both human and animal health. The aim of this review was to explore the prevalence trends of AR E. coli from farm animals, waste treatment, and aquatic environments. The disinfection methods of AR E. coli and possible alternatives to antibiotics were also highlighted. The current review highlights that the prevalence of AR E. coli from food animals, products, and animal waste is increasing at an alarming rate, but is reduced at waste treatment plants. Ultraviolet (UV) treatment, surface plasma oxidation, and biochar are commonly used to effectively eliminate AR E. coli. Some probiotics, plant extracts, and antimicrobial peptides (AMPs) are arousing interest as promising alternatives to antibiotics to fight against AR E. coli. The current review suggests that AR E. coli from farm animal-associated sources is prevalent and poses a serious global threat to public health. This review provides an avenue for further research, development, and application of novel strategies to minimize antibiotic resistance in E. coli of farm animal origin.

18.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36290639

ABSTRACT

Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.

19.
J Control Release ; 350: 132-145, 2022 10.
Article in English | MEDLINE | ID: mdl-35940360

ABSTRACT

Very little is currently known about how inhaled nanomedicine for lung cancer treatment overcomes biological barriers hampering the tumor availability of drug and nanoparticles. Here, we developed a size-transformable nanocarrier (~ 119 nm) in which small-size nanoparticles (~ 28 nm) were loaded in the large nanocarrier after the addition of modified hyaluronan and could be released upon size-transformation at tumor tissue. Subsequently, the pulmonary and tumor pharmacokinetics of the two nanocarriers containing 7-ethyl-10-hydroxycamptothecin (SN38) and a covalently linked fluorescent sonosensitizer were comparatively investigated after intratracheal instillation to mice bearing orthotopic Lewis lung carcinoma tumors. The results showed that both instilled nanoparticles seemed to transport drug to tumor by direct access and transcytosis of nanoparticles, and diffusion of the released drug with the latter accounting for a great proportion of the drug tumor bioavailability. Relative to the small-size nanocarrier, the size-transformable counterpart appeared to restrict the mucociliary and absorption clearances from the lung and the clearance from the tumor interstitium to circulation, leading to increases in lung and tumor bioavailability of SN38 by 58.5% and 199%, respectively. In addition, the size-transformable nanoformulation conferred deep tumor penetration and sustained levels of both sonosensitizer and SN38 within tumors and simultaneously exerted sonodynamic- and chemo-therapies. Overall, the pulmonary delivery of size-transformable nanocarrier could co-deliver sonosensitizer and drug to deep tumor sites with enhanced tumor accumulation to realize combination therapy in lung cancer.


Subject(s)
Lung Neoplasms , Nanoparticles , Animals , Cell Line, Tumor , Hyaluronic Acid , Irinotecan , Lung , Lung Neoplasms/drug therapy , Mice
20.
Ren Fail ; 44(1): 1150-1159, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35834360

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a serious complication related to cardiac surgery. Several studies have been conducted to investigate the effect of dexmedetomidine administration on AKI prevention. OBJECTIVE: To assess if dexmedetomidine is associated with a protective effect of renal function after cardiac surgery. And the aim of conducting this meta-analysis is to summarize the literature and determine the clinical utility of dexmedetomidine administration in patients undergoing cardiac surgery. METHODS: PubMed, Cochrane Library, and EMBASE databases were comprehensively searched for all randomized controlled trials (RCTs) published before 1 December, 2021 that investigated the effect of dexmedetomidine on AKI prevention. RESULTS: Our analysis included 16 studies involving 2148 patients. Compared with the control group, dexmedetomidine administration significantly reduced AKI incidence (OR, 0.47; 95% CI, 0.36-0.61; p < 0.00001; I2 = 26%) and the length of stay in the intensive care unit (ICU) but did not alter mortality rate, length of stay in the hospital, and mechanical ventilation time. Furthermore, the incidence of delirium among patients treated with dexmedetomidine was significantly decreased. CONCLUSION: Dexmedetomidine administration has a positive effect on preventing AKI and postoperative delirium after cardiac surgery and significantly reduces the length of stay in the ICU.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Delirium , Dexmedetomidine , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Cardiac Surgical Procedures/adverse effects , Delirium/chemically induced , Delirium/drug therapy , Dexmedetomidine/therapeutic use , Humans , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL
...