Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38664060

ABSTRACT

BACKGROUND AND HYPOTHESIS: Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into a osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS: We employed transcriptomic analysis of human data and an animal reporter system to pinpoint FHL2 as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2 null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS: Among all the potential RUNX2 cofactor, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION: These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.

2.
Nutrients ; 14(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35631204

ABSTRACT

Iron deficiency is the most common micronutrient deficiency in the world. Previous studies have shown that iron deficiency increases oxidative stress and decreases antioxidant enzymes, and studies of male infertility indicated that oxidative stress may affect male reproductive functions. The aim of this study was to investigate the effects of iron supplementation on spermatogenesis and testicular functions in iron-deficient rats. Three-week-old male Sprague Dawley (SD) rats were randomly divided into two groups: an iron-adequate control (AI group, 35 ppm FeSO4) and an iron-deficient group (ID group, <5 ppm FeSO4). After three weeks, the iron-deficient group was divided into an original iron-deficient group and five iron-supplemented groups, the latter fed diets containing different doses of FeSO4 (6, 12, 18, 24, and 35 ppm). After five weeks, blood and testis tissue were analyzed. We presented as median (interquartile range, IQR) for continuous measurements and compared their differences using the Kruskal−Wallis test followed by the Mann−Whitney U test among groups. The results showed that as compared with the AI group, the ID group had significantly lower serum testosterone and poorer spermatogenesis (The medians (QR) were 187.4 (185.6−190.8) of AI group vs. 87.5 (85.7−90.4) of ID group in serum testosterone, p < 0.05; 9.3 (8.8−10.6) of AI group vs. 4.9 (3.4−5.4) of ID group in mean testicular biopsy score (MTBS], p < 0.05); iron supplementation reversed the impairment of testis tissue. In the testosterone biosynthesis pathway, iron supplementation improved the lowered protein expressions of hydroxysteroid dehydrogenases caused by iron deficiency. Additionally, decreased activities of glutathione peroxidase and catalase, and increased cleaved-caspase 8 and caspase 3 expression, were found in the iron-deficient rats. The iron-supplemented rats that received > 12 ppm FeSO4 exhibited improvements in antioxidant levels. In conclusion, iron supplementation can abrogate testis dysfunction due to iron deficiency through regulation of the testicular antioxidant capacity.


Subject(s)
Iron Deficiencies , Iron , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Dietary Supplements , Iron/metabolism , Male , Rats , Rats, Sprague-Dawley , Spermatogenesis , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL
...