Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
Plant Biotechnol J ; 22(9): 2395-2409, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38593377

ABSTRACT

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Trichothecenes , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/metabolism , Fusarium/pathogenicity , Trichothecenes/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Genes, Bacterial/genetics
2.
Phytopathology ; 114(5): 1057-1067, 2024 May.
Article in English | MEDLINE | ID: mdl-38451497

ABSTRACT

Deoxynivalenol (DON) is the most widespread mycotoxin contaminant hazardous to human and animal health globally. It acts as a crucial virulence factor to stimulate the spread of pathogenic Fusarium within wheat plants. Control of DON and Fusarium disease contributes enormously to food safety, which relies on chemical fungicides. Here, we report the biodegradation of DON using a novel soil bacterium, Devosia insulae FS10-7, and its biocontrol effect against Fusarium crown rot. We demonstrated that strain FS10-7 degraded DON to 3-epi-DON by forming a 3-keto-DON intermediate. Such degradation activity can be maintained at a wide range of pH (4 to 10) and temperature (16 to 42°C) values under aerobic conditions. Notably, strain FS10-7 exhibited practical inhibitory effects on Fusarium crown rot disease caused by F. graminearum and F. pseudograminearum in the in vitro Petri dish test under laboratory conditions and the pot experiment under greenhouse conditions. The mechanisms underlying the biocontrol ability of strain FS10-7 were preliminarily investigated to be associated with its high DON-degrading activity rather than direct antagonism. These results establish the foundation to develop further bioagents capable of biodegrading mycotoxins in cereals and derived products and, accordingly, biocontrol plant diseases caused by DON-producing pathogens.


Subject(s)
Fusarium , Plant Diseases , Soil Microbiology , Trichothecenes , Triticum , Fusarium/physiology , Triticum/microbiology , Trichothecenes/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pest Control, Biological
3.
Toxins (Basel) ; 14(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36422962

ABSTRACT

Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated from sea sediment was demonstrated effective in controlling A. flavus by the production of anti-fungal volatiles. According to morphological characteristics and phylogenetic analysis, strain YM6 was identified as Pseudomonas stutzeri. YM6 can produce abundant volatile compounds which could inhibit mycelial growth and conidial germination of A. flavus. Moreover, it greatly prevented fungal infection and aflatoxin production on maize and peanuts during storage. The inhibition rate was 100%. Scanning electron microscopy further supported that the volatiles could destroy the cell structure of A. flavus and prevent conidia germination on the grain surface. Gas chromatography/mass spectrometry revealed that dimethyl trisulfide (DMTS) with a relative abundance of 13% is the most abundant fraction in the volatiles from strain YM6. The minimal inhibitory concentration of DMTS to A. flavus conidia is 200 µL/L (compound volume/airspace volume). Thus, we concluded that Pseudomonas stutzeri YM6 and the produced DMTS showed great inhibition to A. flavus, which could be considered as effective biocontrol agents in further application.


Subject(s)
Aflatoxins , Pseudomonas stutzeri , Humans , Aspergillus flavus/metabolism , Aflatoxins/analysis , Phylogeny
4.
Front Plant Sci ; 13: 917335, 2022.
Article in English | MEDLINE | ID: mdl-36092414

ABSTRACT

N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic messenger RNAs. m6A was discovered in wheat about 40 years ago; however, its potential roles in wheat remain unknown. In this study, we profiled m6As in spikelets transcriptome at the flowering stage of hexaploid wheat and found that m6As are evenly distributed across the A, B, and D subgenomes but their extents and locations vary across homeologous genes. m6As are enriched in homeologous genes with close expression levels and the m6A methylated genes are more conserved. The extent of m6A methylation is negatively correlated with mRNA expression levels and its presence on mRNAs has profound impacts on mRNA translation in a location-dependent manner. Specifically, m6As within coding sequences and 3'UTRs repress the translation of mRNAs while the m6As within 5'UTRs and start codons could promote it. The m6A-containing mRNAs are significantly enriched in processes and pathways of "translation" and "RNA transport," suggesting the potential role of m6As in regulating the translation of genes involved in translation regulation. Our data also show a stronger translation inhibition by small RNAs (miRNA and phasiRNA) than by m6A methylation, and no synergistical effect between the two was observed. We propose a secondary amplification machinery of translation regulation triggered by the changes in m6A methylation status. Taken together, our results suggest translation regulation as a key role played by m6As in hexaploid wheat.

5.
J Fungi (Basel) ; 7(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34829228

ABSTRACT

Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium-wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium-wheat interactions.

6.
Toxins (Basel) ; 13(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34564663

ABSTRACT

The major causal agents Fusarium graminearum (F. graminearum) and Fusarium asiaticum could produce multiple mycotoxins in infected wheat, which threatens the health of humans and animals. Specifically, deoxynivalenol (DON) and its derivatives 3- and 15-acetyldeoxynivalenol (3-ADON and 15-ADON) are commonly detected mycotoxins in cereal grains. However, the good chromatographic separation of 3-ADON and 15-ADON remains challenging. Here, an LC-MS/MS method for the chemotype determination of Fusarium strains was developed and validated. 3- and 15-ADON could be separated chromatographically in this study with sufficiently low limits of detection (LODs; 4 µg/kg) and limits of quantification (LOQs; 8 µg/kg). The satisfying intraday and interday reproducibility (both %RSDr and %RSDR were <20%) of this method indicated good stability. The recoveries of all analytes were in the range of 80-120%. In addition, three F. graminearum complex (FGC) strains, i.e., PH-1 (chemotype 15-ADON), F-1 (chemotype 3-ADON) and 5035 (chemotype 15-ADON), were selected to verify the accuracy of the method in differentiating phenotypes. The validation results showed that this LC-MS/MS method based on sample pretreatment is effective and suitable for the chromatographic separation of 3-ADON and 15-ADON in wheat.


Subject(s)
Cells, Cultured/drug effects , Edible Grain/microbiology , Fusarium/chemistry , Mycotoxins/analysis , Trichothecenes/analysis , Trichothecenes/toxicity , Triticum/microbiology , China , Chromatography, Liquid , Reproducibility of Results , Tandem Mass Spectrometry
7.
Front Microbiol ; 12: 660976, 2021.
Article in English | MEDLINE | ID: mdl-34305830

ABSTRACT

Controlling the devastating fungal pathogen Fusarium graminearum (Fg) is a challenge due to inadequate resistance in nature. Here, we report on the identification of RNAi molecules and their applications for controlling Fg in wheat through silencing chitin synthase 7 (Chs7), glucan synthase (Gls) and protein kinase C (Pkc). From transgenic Fg strains four RNAi constructs from Chs7 (Chs7RNAi-1, -2, -3, and -4), three RNAi constructs from Gls (GlsRNAi-2, -3, and -6), and one RNAi construct from Pkc (PkcRNAi-5) were identified that displayed effective silencing effects on mycelium growth in medium and pathogenicity in wheat spikes. Transcript levels of Chs7, Gls and Pkc were markedly reduced in those strains. Double-strand RNAs (dsRNAs) of three selected RNAi constructs (Chs7RNAi-4, GlsRNAi-6 and PkcRNA-5) strongly inhibited mycelium growth in vitro. Spray of those dsRNAs on detached wheat leaves significantly reduced lesion sizes; the independent dsRNAs showed comparable effects on lesions with combination of two or three dsRNAs. Expression of three targets Chs7, Gls, and Pkc was substantially down-regulated in Fg-infected wheat leaves. Further application of dsRNAs on wheat spikes in greenhouse significantly reduced infected spikelets. The identified RNAi constructs may be directly used for spray-induced gene silencing and stable expression in plants to control Fusarium pathogens in agriculture.

8.
Toxins (Basel) ; 12(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32492959

ABSTRACT

Trichothecenes are the most common mycotoxins contaminating small grain cereals worldwide. The C12,13 epoxide group in the trichothecenes was identified as a toxic group posing harm to humans, farm animals, and plants. Aerobic biological de-epoxidation is considered the ideal method of controlling these types of mycotoxins. In this study, we isolated a novel trichothecene mycotoxin-de-epoxidating bacterium, Desulfitobacterium sp. PGC-3-9, from a consortium obtained from the soil of a wheat field known for the occurrence of frequent Fusarium head blight epidemics under aerobic conditions. Along with MMYPF media, a combination of two antibiotics (sulfadiazine and trimethoprim) substantially increased the relative abundance of Desulfitobacterium species from 1.55% (aerobic) to 29.11% (aerobic) and 28.63% (anaerobic). A single colony purified strain, PGC-3-9, was isolated and a 16S rRNA sequencing analysis determined that it was Desulfitobacterium. The PGC-3-9 strain completely de-epoxidated HT-2, deoxynivalenol (DON), nivalenol and 15-acetyl deoxynivalenol, and efficiently eliminated DON in wheat grains under aerobic and anaerobic conditions. The strain PGC-3-9 exhibited high DON de-epoxidation activity at a wide range of pH (6-10) and temperature (15-50 °C) values under both conditions. This strain may be used for the development of detoxification agents in the agriculture and feed industries and the isolation of de-epoxidation enzymes.


Subject(s)
Desulfitobacterium/metabolism , Edible Grain/microbiology , Food Microbiology , Fungi/metabolism , Soil Microbiology , Trichothecenes/metabolism , Triticum/microbiology , Hydrogen-Ion Concentration , Inactivation, Metabolic , Oxygen/metabolism , Temperature
9.
Food Chem ; 321: 126703, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32247890

ABSTRACT

The Fusarium mycotoxin deoxynivalenol (DON) is typically controlled by fungicides. Here, we report DON detoxification using enzymes from the highly active Devosia strain D6-9 which degraded DON at 2.5 µg/min/108 cells. Strain D6-9 catabolized DON to 3-keto-DON and 3-epi-DON, completely removing DON in wheat. Genome analysis of three Devosia strains (D6-9, D17, and D13584), with strain D6-9 transcriptomes, identified three genes responsible for DON epimerization. One gene encodes a quinone-dependent DON dehydrogenase QDDH which oxidized DON into 3-keto-DON. Two genes encode the NADPH-dependent aldo/keto reductases AKR13B2 and AKR6D1 that convert 3-keto-DON into 3-epi-DON. Recombinant proteins expressed in Escherichia coli efficiently degraded DON in wheat grains. Molecular docking and site-directed mutagenesis revealed that residues S497, E499, and E535 function in QDDH's DON-oxidizing activity. These results advance potential microbial and enzymatic elimination of DON in agricultural samples and lend insight into the underlying mechanisms and molecular evolution of DON detoxification.


Subject(s)
Aldo-Keto Reductases/metabolism , Hyphomicrobiaceae/enzymology , Trichothecenes/metabolism , Triticum/enzymology , Fusarium/metabolism , Molecular Docking Simulation , NADP/metabolism , Oxidation-Reduction , Quinone Reductases/metabolism
10.
Mol Plant Pathol ; 20(11): 1574-1581, 2019 11.
Article in English | MEDLINE | ID: mdl-31385410

ABSTRACT

MicroRNA-like RNAs (milRNAs) post-transcriptionally down-regulate target genes. We investigated Fusarium graminearum (Fg) milRNA expression during fungal vegetative growth and infection of wheat. Small RNA sequencing identified 36 milRNAs from Fg, one of which, Fgmil-2, had >100 transcripts per million in conidia, mycelia and infected wheat, with the highest expression in conidia and the lowest expression in colonized wheat tissue. Fgmil-2 displays perfect homology to the 3'-untranslated region (3'-UTR) of an FgbioH1 messenger RNA that is involved in biotin biosynthesis. Poly(A) polymerase-mediated rapid amplification of cDNA ends combined with sequencing analysis demonstrated that cleavage at a specific site by FgDicer2 in the 3'-UTR of FgbioH1 transcripts generated the Fgmil-2 precursor with a typical hairpin structure. Deletion of FgbioH1 or FgDicer2 genes abolished Fgmil-2 biogenesis. FgbioH1 had an inversely correlated pattern of expression to that of Fgmil-2 and FgDicer2. Deletion of FgbioH1 also showed that it is required for mycelial growth, virulence, mycotoxin biosynthesis and expression of biotin-dependent carboxylase genes. This study reveals in Fg a novel mode of inversely correlated post-transcriptional regulation in which Fgmil-2 originates from its own target transcript, FgbioH, to govern biotin biosynthesis.


Subject(s)
Biotin/biosynthesis , Fusarium/genetics , Fusarium/pathogenicity , Gene Expression Regulation, Fungal , MicroRNAs/genetics , RNA, Messenger/genetics , Base Sequence , Biomass , Fusarium/growth & development , Mycelium/growth & development , RNA, Messenger/metabolism , Virulence/genetics
11.
Front Microbiol ; 10: 1419, 2019.
Article in English | MEDLINE | ID: mdl-31293550

ABSTRACT

Controlling aflatoxigenic Aspergillus flavus and aflatoxins (AFs) in grains and food during storage is a great challenge to humans worldwide. Alcaligenes faecalis N1-4 isolated from tea rhizosphere soil can produce abundant antifungal volatiles, and greatly inhibited the growth of A. flavus in un-contacted face-to-face dual culture testing. Gas chromatography tandem mass spectrometry revealed that dimethyl disulfide (DMDS) and methyl isovalerate (MI) were two abundant compounds in the volatile profiles of N1-4. DMDS was found to have the highest relative abundance (69.90%, to the total peak area) in N1-4, which prevented the conidia germination and mycelial growth of A. flavus at 50 and 100 µL/L, respectively. The effective concentration for MI against A. flavus is 200 µL/L. Additionally, Real-time quantitative PCR analysis proved that the expression of 12 important genes in aflatoxin biosynthesis pathway was reduced by these volatiles, and eight genes were down regulated by 4.39 to 32.25-folds compared to control treatment with significant differences. And the A. flavus infection and AFs contamination in groundnut, maize, rice and soybean of high water activity were completely inhibited by volatiles from N1-4 in storage. Scanning electron microscope further proved that A. flavus conidia inoculated on peanuts surface were severely damaged by volatiles from N1-4. Furthermore, strain N1-4 showed broad and antifungal activity to other six important plant pathogens including Fusarium graminearum, F. equiseti, Alternaria alternata, Botrytis cinerea, Aspergillus niger, and Colletotrichum graminicola. Thus, A. faecalis N1-4 and volatile DMDS and MI may have potential to be used as biocontrol agents to control A. flavus and AFs during storage.

12.
J Proteome Res ; 18(9): 3317-3327, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31241341

ABSTRACT

Fusarium head blight (FHB) mainly resulting from Fusarium graminearum (Fg) Schwabe is a notorious wheat disease causing huge losses in wheat production globally. Fg also produces mycotoxins, which are harmful to human and domestic animals. In our previous study, we obtained two Fg mutants, TPS1- and TPS2-, respectively, with a single deletion of trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) compared with the wild type (WT). Both mutants were unable to synthesize trehalose and produced fewer mycotoxins. To understand the other biochemical changes induced by TPS gene deletion in Fg, we comprehensively analyzed the metabolomic differences between TPS- mutants and the WT using NMR together with gas chromatography-flame ionization detection/mass spectrometry. The expression of some relevant genes was also quantified. The results showed that TPS1- and TPS2- mutants shared some common metabolic feature such as decreased levels for trehalose, Val, Thr, Lys, Asp, His, Trp, malonate, citrate, uridine, guanosine, inosine, AMP, C10:0, and C16:1 compared with the WT. Both mutants also shared some common expressional patterns for most of the relevant genes. This suggests that apart from the reduced trehalose biosynthesis, both TPS1 and TPS2 have roles in inhibiting glycolysis and the tricarboxylic acid cycle but promoting the phosphopentose pathway and nucleotide synthesis; the depletion of either TPS gene reduces the acetyl-CoA-mediated mycotoxin biosynthesis. TPS2- mutants produced more fatty acids than TPS1- mutants, suggesting different roles for TPS1 and TPS2, with TPS2- mutants having impaired trehalose biosynthesis and trehalose 6-phosphate accumulation. This may offer opportunities for developing new fungicides targeting trehalose biosynthesis in Fg for FHB control and mycotoxin reduction in the FHB-affected cereals.


Subject(s)
Fusariosis/genetics , Glucosyltransferases/genetics , Mycotoxins/genetics , Plant Diseases/genetics , Animals , Disease Resistance/genetics , Fusariosis/microbiology , Fusarium/genetics , Fusarium/pathogenicity , Gene Expression Regulation, Plant/drug effects , Glycolysis/genetics , Humans , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Plant Diseases/microbiology , Saccharomyces cerevisiae , Sugar Phosphates/genetics , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/genetics , Trehalose/metabolism , Triticum/genetics , Triticum/growth & development , Triticum/microbiology
13.
Toxicol Sci ; 166(2): 370-381, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30169763

ABSTRACT

Molecular mechanism and key factors responsible for cytotoxicity against mycotoxin deoxynivalenol (DON) from Fusarium pathogens are rarely elucidated. In this study, rapid increases of ROS were first observed in human gastric epithelial (GES-1) cells under DON exposure. Mitochondrial DNA damage, impaired respiratory chain, and decreased oxygen consumption rate (OCR) values, as well as G2/M cell cycle arrest and apoptosis, were also detected. Via combinatorial approaches of a large-scale microarray of differentially expressed genes, high content and RNAi analysis, a transcription factor of Forkhead box O3 (FOXO3a) was found with crucial functionalities, regulated some apoptotic genes associated with mitochondrial toxicity and cell death after activation by nuclear translocation. Namely, knockdown of FOXO3a decreased the cytotoxicity of DON to GES-1 cells. Moreover, knockdown of the FOXO ortholog DAF16 in Caenorhabditis elegans increased the resistance to DON-induced cytotoxicity. Simultaneously, the signaling pathway of ROS/JNK/FOXO3a of DON-induced cytotoxicity was newly proposed. In total, FOXO3a via ROS/JNK/FOXO3a plays a critical role to function as negative regulator associating with DON-induced cytotoxicity, with the potential extending to other substances.


Subject(s)
Apoptosis/drug effects , Forkhead Box Protein O3/metabolism , Mitochondria/drug effects , Trichothecenes/toxicity , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Caspase 3/metabolism , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Cyclin G2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Forkhead Transcription Factors/metabolism , Fusarium/chemistry , Gene Expression Regulation/drug effects , Humans , MAP Kinase Kinase 4/metabolism , Mitochondria/metabolism , Nuclear Proteins/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering , Reactive Oxygen Species , Signal Transduction , Transcription Factor CHOP/metabolism
14.
Toxins (Basel) ; 10(5)2018 04 24.
Article in English | MEDLINE | ID: mdl-29695035

ABSTRACT

Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom) and storage times (3, 6, 9, and 12 months). The fungal community in wheat on the first day of storage (T0) included 105 classified species (81 genera) and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%), Filobasidium floriforme (27%), Fusarium graminearum (12%), and Wallemia sebi (12%). Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13⁻34% higher in all positions at 3 months compared to T0, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24⁻57% higher than at T0. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T0 and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models.


Subject(s)
Aflatoxins/analysis , Edible Grain/chemistry , Edible Grain/microbiology , Food Contamination/analysis , Trichothecenes/analysis , Triticum/chemistry , Triticum/microbiology , Agriculture/methods , Bacteria/genetics , Bacteria/isolation & purification , China , DNA, Bacterial/analysis , DNA, Fungal/analysis , Environmental Monitoring , Fungi/genetics , Fungi/isolation & purification , Microbiota
15.
Toxins (Basel) ; 10(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29494529

ABSTRACT

MycoKey, an EU-funded Horizon 2020 project, includes a series of "Roundtable Discussions" to gather information on trending research areas in the field of mycotoxicology. This paper includes summaries of the Roundtable Discussions on Chemical Detection and Monitoring of mycotoxins and on the role of genetics and biodiversity in mycotoxin production. Discussions were managed by using the nominal group discussion technique, which generates numerous ideas and provides a ranking for those identified as the most important. Four questions were posed for each research area, as well as two questions that were common to both discussions. Test kits, usually antibody based, were one major focus of the discussions at the Chemical Detection and Monitoring roundtable because of their many favorable features, e.g., cost, speed and ease of use. The second area of focus for this roundtable was multi-mycotoxin detection protocols and the challenges still to be met to enable these protocols to become methods of choice for regulated mycotoxins. For the genetic and biodiversity group, both the depth and the breadth of trending research areas were notable. For some areas, e.g., microbiome studies, the suggested research questions were primarily of a descriptive nature. In other areas, multiple experimental approaches, e.g., transcriptomics, proteomics, RNAi and gene deletions, are needed to understand the regulation of toxin production and mechanisms underlying successful biological controls. Answers to the research questions will provide starting points for developing acceptable prevention and remediation processes. Forging a partnership between scientists and appropriately-placed communications experts was recognized by both groups as an essential step to communicating risks, while retaining overall confidence in the safety of the food supply and the integrity of the food production chain.


Subject(s)
Mycotoxins , Animals , Biodiversity , Environmental Monitoring , Humans , Mycotoxins/analysis , Mycotoxins/genetics , Research
16.
Sci Rep ; 7(1): 9549, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842569

ABSTRACT

Degradation of toxins by microorganisms is a promising approach for detoxification of agricultural products. Here, a bacterial strain, Sphingomonas S3-4, that has the ability to degrade the mycotoxin deoxynivalenol (DON) was isolated from wheat fields. Incubation of Fusarium-infected wheat grains with S3-4 completely eliminated DON. In S3-4 DON is catabolized into compounds with no detectable phytotoxicity, 3-oxo-DON and 3-epi-DON, via two sequential reactions. Comparative analysis of genome sequences from two DON-degrading strains, S3-4 and Devosia D17, and one non-DON-degrading strain, Sphingobium S26, combined with functional screening of a S3-4 genomic BAC library led to the discovery that a novel aldo/keto reductase superfamily member, AKR18A1, is responsible for oxidation of DON into 3-oxo-DON. DON-degrading activity is completely abolished in a mutant S3-4 strain where the AKR18A1 gene is disrupted. Recombinant AKR18A1 protein expressed in Escherichia coli catalyzed the reversible oxidation/reduction of DON at a wide range of pH values (7.5 to 11) and temperatures (10 to 50 °C). The S3-4 strain and recombinant AKR18A1 also catabolized zearalenone and the aldehydes glyoxal and methyglyoxal. The S3-4 strain and the AKR18A1 gene are promising agents for the control of Fusarium pathogens and detoxification of mycotoxins in plants and in food/feed products.


Subject(s)
Aldo-Keto Reductases/metabolism , Biotransformation , Fusarium/metabolism , Mycotoxins/metabolism , Soil Microbiology , Sphingomonas/metabolism , Aldo-Keto Reductases/genetics , Cloning, Molecular , Enzyme Activation , Gas Chromatography-Mass Spectrometry , Genomics , Magnetic Resonance Spectroscopy , Metabolome , Metabolomics/methods , Molecular Structure , Mycotoxins/chemistry , Recombinant Proteins , Seedlings , Sequence Analysis, DNA , Triticum/growth & development , Triticum/metabolism
17.
Front Plant Sci ; 8: 2177, 2017.
Article in English | MEDLINE | ID: mdl-29354139

ABSTRACT

Fusarium head blight disease resulting from Fusarium graminearum (FG) infection causes huge losses in global production of cereals and development of FG-resistant plants is urgently needed. To understand biochemistry mechanisms for FG resistance, here, we have systematically investigated the plant metabolomic phenotypes associated with FG resistance for transgenic Arabidopsis thaliana expressing a class-I chitinase (Chi), a Fusarium-specific recombinant antibody gene (CWP2) and fused Chi-CWP2. Plant disease indices, mycotoxin levels, metabonomic characteristics, and expression levels of several key genes were measured together with their correlations. We found that A. thaliana expressing Chi-CWP2 showed higher FG resistance with much lower disease indices and mycotoxin levels than the wild-type and the plants expressing Chi or CWP2 alone. The combined metabonomic and quantitative RT-PCR analyses revealed that such FG-resistance was closely associated with the promoted biosynthesis of secondary metabolites (phenylpropanoids, alkanoids) and organic osmolytes (proline, betaine, glucose, myo-inositol) together with enhanced TCA cycle and GABA shunt. These suggest that the concurrently enhanced biosyntheses of the shikimate-mediated secondary metabolites and organic osmolytes be an important strategy for A. thaliana to develop and improve FG resistance. These findings provide essential biochemical information related to FG resistance which is important for developing FG-resistant cereals.

18.
Front Microbiol ; 8: 2710, 2017.
Article in English | MEDLINE | ID: mdl-29403455

ABSTRACT

Fungi belonging to Fusarium genus can infect crops in the field and cause subsequent mycotoxin contamination, which leads to yield and quality losses of agricultural commodities. The mycotoxin zearalenone (ZEN) produced by several Fusarium species (such as F. graminearum and F. culmorum) is a commonly-detected contaminant in foodstuffs, posing a tremendous risk to food safety. Thus, different strategies have been studied to manage toxigenic pathogens and mycotoxin contamination. In recent years, biological control of toxigenic fungi is emerging as an environment-friendly strategy, while Trichoderma is a fungal genus with great antagonistic potentials for controlling mycotoxin producing pathogens. The primary objective of this study was to explore the potentials of selected Trichoderma isolates on ZEN-producing F. graminearum, and the second aim was to investigate the metabolic activity of different Trichoderma isolates on ZEN. Three tested Trichoderma isolates were proved to be potential candidates for control of ZEN producers. In addition, we reported the capacity of Trichoderma to convert ZEN into its reduced and sulfated forms for the first time, and provided evidences that the tested Trichoderma could not detoxify ZEN via glycosylation. This provides more insight in the interaction between ZEN-producing fungi and Trichoderma isolates.

19.
Toxins (Basel) ; 9(1)2016 12 26.
Article in English | MEDLINE | ID: mdl-28035973

ABSTRACT

In this study, twenty of the most common Fusarium species were molecularly characterized and inoculated on potato dextrose agar (PDA), rice and maize medium, where thirty three targeted mycotoxins, which might be the secondary metabolites of the identified fungal species, were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Statistical analysis was performed with principal component analysis (PCA) to characterize the mycotoxin profiles for the twenty fungi, suggesting that these fungi species could be discriminated and divided into three groups as follows. Group I, the fusaric acid producers, were defined into two subgroups, namely subgroup I as producers of fusaric acid and fumonisins, comprising of F. proliferatum, F. verticillioides, F. fujikuroi and F. solani, and subgroup II considered to only produce fusaric acid, including F. temperatum, F. subglutinans, F. musae, F. tricinctum, F. oxysporum, F. equiseti, F. sacchari, F. concentricum, F. andiyazi. Group II, as type A trichothecenes producers, included F. langsethiae, F. sporotrichioides, F. polyphialidicum, while Group III were found to mainly produce type B trichothecenes, comprising of F. culmorum, F. poae, F. meridionale and F. graminearum. A comprehensive picture, which presents the mycotoxin-producing patterns by the selected fungal species in various matrices, is obtained for the first time, and thus from an application point of view, provides key information to explore mycotoxigenic potentials of Fusarium species and forecast the Fusarium infestation/mycotoxins contamination.


Subject(s)
Fusarium/chemistry , Mycotoxins/chemistry , Chromatography, Liquid , Culture Media/chemistry , Fumonisins/chemistry , Fusaric Acid/chemistry , Fusarium/classification , Principal Component Analysis , Species Specificity , Tandem Mass Spectrometry , Trichothecenes/chemistry
20.
Toxins (Basel) ; 8(11)2016 11 15.
Article in English | MEDLINE | ID: mdl-27854265

ABSTRACT

Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA) medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G), which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum.


Subject(s)
Biological Control Agents , Fusarium/metabolism , Trichoderma , Trichothecenes/metabolism , Coculture Techniques , Fusarium/growth & development , Glycosylation , Mycelium/growth & development , Trichoderma/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL