ABSTRACT
To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5tha(-1) biochar (BC1), application of 10tha(-1) biochar (BC2), application of 10tha(-1) biochar (BC3), rice straw return at 2400kgha(-1)(RS) and inoculated rice straw return at 2400kgha(-1)(RI). The results indicated that biochar amendment significantly decreased methane (CH4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p<0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20tha(-1)) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system.