Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(18): 6948-6954, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37083401

ABSTRACT

Two templated borates, [Co(bpy)2BO2(OH)]·[B5O6(OH)4]·H3BO3·H3O·H2O (1) and [Cu(bpy)(OH)]2·[B5O6(OH)4]2·H2O (2), have been synthesized successfully and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and Fourier transform infrared. The [Co(bpy)2BO2(OH)] complex in 1 shows a very rare coordination mode between Co2+ and BO2(OH)2-. The structures of 1 and 2 can be adjusted by changing the reagent. The oxygen reduction reaction activity of these Co- and Cu-based catalysts was studied. The E1/2 values of Co-C-750 and Cu-C-750 are 0.864 and 0.837 V, respectively.

2.
Front Genet ; 12: 792172, 2021.
Article in English | MEDLINE | ID: mdl-35096009

ABSTRACT

To characterize the cold tolerance mechanism of the Pacific white shrimp (Litopenaeus vannamei), we performed single-cell RNA sequencing (scRNA-seq) of ∼5185 hepatopancreas cells from cold-tolerant (Lv-T) and common (Lv-C) L. vannamei at preferred and low temperatures (28°C and 10°C, respectively). The cells fell into 10 clusters and 4 cell types: embryonic, resorptive, blister-like, and fibrillar. We identified differentially expressed genes between Lv-T and Lv-C, which were mainly associated with the terms "immune system," "cytoskeleton," "antioxidant system," "digestive enzyme," and "detoxification," as well as the pathways "metabolic pathways of oxidative phosphorylation," "metabolism of xenobiotics by cytochrome P450," "chemical carcinogenesis," "drug metabolism-cytochrome P450," and "fatty acid metabolism." Reconstruction of fibrillar cell trajectories showed that, under low temperature stress, hepatopancreas cells had two distinct fates, cell fate 1 and cell fate 2. Cell fate 1 was mainly involved in signal transduction and sensory organ development. Cell fate 2 was mainly involved in metabolic processes. This study preliminarily clarifies the molecular mechanisms underlying cold tolerance in L. vannamei, which will be useful for the breeding of shrimp with greater cold tolerance.

3.
Fish Shellfish Immunol ; 88: 198-206, 2019 May.
Article in English | MEDLINE | ID: mdl-30826413

ABSTRACT

Viral capsid proteins play an important role in the viral infection process. To identify the cellular proteins in shrimp that interact with the Penaeus stylirostris densovirus capsid protein (PstDNV-CP), we constructed a yeast two-hybrid (Y2H) cDNA library of the muscle tissue of Litopenaeus vannamei, and hybridized the bait vector pGBKT7-CP with this library. Cloning and sequencing showed that the shrimp protein interacting with PstDNV-CP was a homolog of BRCA2 and CDKN1A(p21)-interacting protein (BCCIP). We named this protein L. vannamei BCCIP (LvBCCIP). Further analysis showed that LvBCCIP interacted with L. vannamei calmodulin (LvCaM). We validated the interactions between PstDNV-CP and LvBCCIP, and between LvBCCIP and LvCaM, with GST pulldown assays. The gene expression of LvBCCIP increased significantly after PstDNV challenge. In addition, the PstDNV titer of PstDNV-challenged shrimp was significantly reduced after LvBCCIP expression was inhibited using double-stranded RNA (dsRNA) interference. These results indicated that LvBCCIP is critical to PstDNV pathogenesis in L. vannamei. Interestingly, the growth rate of L. vannamei was significantly reduced when LvBCCIP gene expression was silenced, indicating that LvBCCIP may also be associated with growth regulation in L. vannamei. Thus, the interaction between PstDNV-CP and LvBCCIP might explain why PstDNV infection leads to runt-deformity syndrome in shrimp.


Subject(s)
Capsid Proteins/metabolism , Densovirus/physiology , Penaeidae/virology , Animals , BRCA2 Protein/metabolism , Calmodulin/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression , Penaeidae/growth & development , RNA Interference
4.
PLoS One ; 8(8): e73218, 2013.
Article in English | MEDLINE | ID: mdl-23991181

ABSTRACT

Pacific white shrimp (Litopenaeus vannamei) is the most extensively farmed crustacean species in the world. White spot syndrome virus (WSSV) is one of the major pathogens in the cultured shrimp. However, the molecular mechanisms of the host-virus interaction remain largely unknown. In this study, the impact of WSSV infection on host gene expression in the hepatopancreas of L. vannamei was investigated through the use of 454 pyrosequencing-based RNA-Seq of cDNA libraries developed from WSSV-challenged shrimp or normal controls. By comparing the two cDNA libraries, we show that 767 host genes are significantly up-regulated and 729 genes are significantly down-regulated by WSSV infection. KEGG analysis of the differentially expressed genes indicated that the distribution of gene pathways between the up- and down-regulated genes is quite different. Among the differentially expressed genes, several are found to be involved in various processes of animal defense against pathogens such as apoptosis, mitogen-activated protein kinase (MAPK) signaling, toll-like receptor (TLR) signaling, Wnt signaling and antigen processing and presentation pathways. The present study provides valuable information on differential expression of L. vannamei genes following WSSV infection and improves our current understanding of this host-virus interaction. In addition, the large number of transcripts obtained in this study provides a strong basis for future genomic research on shrimp.


Subject(s)
Crustacea/genetics , Transcriptome , White spot syndrome virus 1/physiology , Animals , Crustacea/virology , DNA, Complementary , Polymerase Chain Reaction
5.
PLoS One ; 8(2): e57515, 2013.
Article in English | MEDLINE | ID: mdl-23469011

ABSTRACT

BACKGROUND: The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. METHODOLOGY/PRINCIPAL FINDINGS: We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10-5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. CONCLUSIONS/SIGNIFICANCE: This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp.


Subject(s)
Crustacea/genetics , Dicistroviridae/genetics , Hepatopancreas/metabolism , Transcriptome , Animals , Crustacea/immunology , DNA, Complementary/genetics , Hepatopancreas/physiopathology , Microsatellite Repeats/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...