Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Article in English | MEDLINE | ID: mdl-39086200

ABSTRACT

Objective To evaluate the effect of surgical treatment on extracranial supra-aortic aneurysms and summarize the experience.Methods The clinical data of 10 patients undergoing surgical treatment of extracranial supra-aortic aneurysms from May 2019 to November 2023 in the Department of Vascular Surgery of Beijing Tiantan Hospital affiliated to Capital Medical University were collected.The 10 patients included 5 patients with internal carotid artery aneurysm,2 patients with subclavian artery aneurysm,2 patients with vertebral artery aneurysm,and 1 patient with internal carotid artery aneurysm combined with ipsilateral subclavian artery aneurysm.The surgical indications,surgical regimens,clinical efficacy,and complications were retrospectively analyzed. Results All the 10 patients underwent surgery successfully,with the surgery duration range of 60-420 min and the median surgery duration of 180.0 (121.5,307.5) min.Intraoperative bleeding volume varied within 30-400 mL,with a median of 90 (50,125) mL.The time of carotid artery blocking and vertebral artery blocking varied within the ranges of 10-20 min and 20-30 min,with the medians of 15.0 (11.5,16.3) min and 25.0 (15.0,22.5) min,respectively.No cardiac accident,cerebral infarction,or cerebral hemorrhage occurred during the perioperative period.The 10 patients were followed up for 3-58 months,with the median follow-up time of 8.5 (5.3,17.0) months.One patient with subclavian artery aneurysm developed artificial vessel occlusion 20 months after surgery.One patient with internal carotid artery aneurysm developed distal carotid artery stenosis 6 months after surgery. Conclusion Surgical treatment should be actively adopted for extracranial supra-aortic aneurysms,and individualized surgical regimens should be designed according to patient conditions.

2.
Nurs Crit Care ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004612

ABSTRACT

BACKGROUND: Catheter-related thrombosis is a common complication of the peripherally inserted central catheter (PICC) in neonates, leading to unintended tube removal and significantly affecting neonatal health and safety. Despite widespread reporting on the estimated occurrence and factors contributing to neonatal PICC-related thrombosis, these findings have not been synthesized. OBJECTIVES: The purpose of this study was to determine the incidence and risk factors of neonatal PICC-related thrombosis. DESIGN: Systematic literature review and meta-analysis. METHODS: Two independent researchers systematically explored multiple databases-such as PubMed, Medline, Embase and the Cochrane Library-from their inception until October 2023. Our study aggregates and scrutinizes studies specifically addressing the incidence and risk factors of neonatal PICC-related thrombosis. Employing the RevMan 5.3 software, a meta-analysis was executed to determine the incidence of both thrombosis and odds ratios (OR), accompanied by their respective 95% confidence intervals (CI) for the risk factors. RESULTS: A total of 327 articles were screened, and data from 24 studies were used in synthesis. Neonatal PICC-related thrombosis incidence varied from 0.23% to 17.91%. The pooled incidence was 2% (95% CI: 1%-2%; I2 = 94%; p < .0001). The study identified 12 risk factors, including insertion sites in the lower extremities (OR = 0.22; 95% CI: 0.09-0.56; p = .001), gestational age <28 weeks, abdominal pathology, fresh frozen plasma by day 5 > 50 mL/kg, PICC tip location (proximal placement), two lumens, three lumens, prolonged hospital stay, infection, mothers' use of anticoagulants, patients with cardiac insufficiency and being twin-to-twin transfusion syndrome donor. CONCLUSIONS: The analysis indicates an overall pooled incidence of neonatal PICC-related thrombosis of 2%. Twelve factors were identified as risks associated with neonatal PICC-related thrombosis. Understanding the risk factors can provide evidence-based recommendations for improving awareness, control and treatment and better nursing management. RELEVANCE TO CLINICAL PRACTICE: This systematic review and meta-analysis illuminates the incidence and risk factors linked to neonatal PICC-related thrombosis, delivering essential insights pivotal for clinical decision-making and enhancing patient care within neonatal health care settings.

3.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968937

ABSTRACT

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.

4.
Neurol Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862654

ABSTRACT

BACKGROUND: Altered gut metabolites, especially short-chain fatty acids (SCFAs), in feces and plasma are observed in patients with Parkinson's disease (PD). OBJECTIVE: We aimed to investigate the colonic expression of two SCFA receptors, free fatty acid receptor (FFAR)2 and FFAR3, and gut barrier integrity in patients with PD and correlations with clinical severity. METHODS: In this retrospective study, colonic biopsy specimens were collected from 37 PD patients and 34 unaffected controls. Of this cohort, 31 participants (14 PD, 17 controls) underwent a series of colon biopsies. Colonic expression of FFAR2, FFAR3, and the tight junction marker ZO-1 were assayed by immunofluorescence staining. The You Only Look Once (version 8, YOLOv8) algorithm was used for automated detection and segmentation of immunostaining signal. PD motor function was assessed with the Movement Disorder Society (MDS)-Unified Parkinson's Disease Rating Scale (UPDRS), and constipation was assessed using Rome-IV criteria. RESULTS: Compared with controls, PD patients had significantly lower colonic expression of ZO-1 (p < 0.01) and FFAR2 (p = 0.01). On serial biopsy, colonic expression of FFAR2 and FFAR3 was reduced in the pre-motor stage before PD diagnosis (both p < 0.01). MDS-UPDRS motor scores did not correlate with colonic marker levels. Constipation severity negatively correlated with colonic ZO-1 levels (r = -0.49, p = 0.02). CONCLUSIONS: Colonic expression of ZO-1 and FFAR2 is lower in PD patients compared with unaffected controls, and FFAR2 and FFAR3 levels decline in the pre-motor stage of PD. Our findings implicate a leaky gut phenomenon in PD and reinforce that gut metabolites may contribute to the process of PD.

5.
Nat Commun ; 15(1): 5094, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877020

ABSTRACT

Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.


Subject(s)
Bone Resorption , Ferroptosis , Mitochondria , Myeloid Cells , Osteoclasts , Osteoporosis , Animals , Mitochondria/metabolism , Bone Resorption/metabolism , Bone Resorption/pathology , Osteoclasts/metabolism , Myeloid Cells/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Mice , Glucocorticoids/metabolism , Glutathione/metabolism , Mice, Inbred C57BL , Cell Differentiation , Mice, Knockout , Humans , Male
6.
Sci Adv ; 10(26): eadk2913, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941455

ABSTRACT

The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , Mitochondria , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Animals , Mitochondria/metabolism , Mice , Endothelial Cells/metabolism , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics
7.
Environ Sci Technol ; 58(27): 12123-12134, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38934384

ABSTRACT

Clay minerals are ubiquitous in subsurface environments and have long been recognized as having a limited or negligible impact on the fate of arsenic (As) due to their negatively charged surfaces. Here, we demonstrate the significant role of kaolinite (Kln), a pervasive clay mineral, in enhancing As(V) immobilization during ferrous iron (Fe(II)) oxidation at near-neutral pH. Our results showed that Fe(II) oxidation alone was not capable of immobilizing As(V) at relatively low Fe/As molar ratios (≤2) due to the generation of Fe(III)-As(V) nanocolloids that could still migrate easily as truly dissolved As did. In the presence of kaolinite, dissolved As(V) was significantly immobilized on the kaolinite surfaces via forming Kln-Fe(III)-As(V) ternary precipitates, which had large sizes (at micrometer levels) to reduce the As mobility. The kaolinite-induced heterogeneous pathways for As(V) immobilization involved Fe(II) adsorption, heterogeneous oxidation of adsorbed Fe(II), and finally heterogeneous nucleation/precipitation of Fe(III)-As(V) phases on the edge surfaces of kaolinite. The surface precipitates were mixtures of amorphous basic Fe(III)-arsenate and As-rich hydrous ferric oxide. Our findings provide new insights into the role of clay minerals in As transformation, which is significant for the fate of As in natural and engineered systems.


Subject(s)
Arsenates , Kaolin , Oxidation-Reduction , Kaolin/chemistry , Arsenates/chemistry , Iron/chemistry , Ferrous Compounds/chemistry , Adsorption
8.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744846

ABSTRACT

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Subject(s)
Mitochondria , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondrial Diseases/metabolism , DNA, Mitochondrial/genetics , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Animals
9.
Acta Trop ; 255: 107247, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729330

ABSTRACT

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Subject(s)
Echinococcus multilocularis , Fatty Acid-Binding Proteins , Helminth Proteins , Macrophages , Phagocytosis , Animals , Echinococcus multilocularis/genetics , Echinococcus multilocularis/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminth Proteins/immunology , Nitric Oxide/metabolism , Apoptosis , Cytokines/metabolism , RAW 264.7 Cells
10.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489266

ABSTRACT

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Subject(s)
Hydrolases , Protein Processing, Post-Translational , Mice , Animals , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/metabolism , Hydrolases/metabolism , Histocompatibility Antigens Class II/metabolism , Macrophages/metabolism
11.
Langmuir ; 40(13): 7127-7138, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38512061

ABSTRACT

Contradicting relationships between physicochemical properties of nanomaterials (e.g., size and ζ-potential) and their aggregation behavior have been constantly reported in previous literature, and such contradictions deviate from the predictions of the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. To resolve such controversies, in this work, we employed a meta-analytic approach to synthesize the data from 46 individual studies reporting the critical coagulation concentration (CCC) of two carbon nanomaterials, namely, graphene oxide (GO) and carbon nanotube (CNT). The correlations between CCC and material physicochemical properties (i.e., size, ζ-potential, and surface functionalities) were examined and compared to the theoretical predictions. Results showed that the CCC of electrostatically stabilized carbon nanomaterials increased with decreasing nanomaterial size when their hydrodynamic sizes were smaller than ca. 200 nm. This is qualitatively consistent with the prediction of the DLVO theory but with a smaller threshold size than the predicted 2 µm. Above the threshold size, the material ζ-potential can be correlated to CCC for nanomaterials with moderate/low surface charge, in agreement with the DLVO theory. The correlation was not observed for highly charged nanomaterials because of their underestimated surface potential by the ζ-potential. Furthermore, a correlation between the C/O ratio and CCC was observed, where a lower C/O ratio resulted in a higher CCC. Overall, our findings rationalized the inconsistency between experimental observation and theoretical prediction and provided essential insights into the aggregation behavior of nanomaterials in water, which could facilitate their rational design.

12.
Anim Nutr ; 17: 25-35, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38464952

ABSTRACT

Trimethylamine oxide (TMAO) is a microbiota-derived metabolite, and numerous studies have shown that it could regulate fat metabolism in humans and mice. However, few studies have focused on the effects of TMAO on fat deposition in growing-finishing pigs. This study aimed to investigate the effect of TMAO on fat deposition and intestinal microbiota in growing-finishing pigs. Sixteen growing pigs were randomly divided into 2 groups and fed with a basal diet with 0 or 1 g/kg TMAO for 149 d. The intestinal microbial profiles, fat deposition indexes, and fatty acid profiles were measured. These results showed that TMAO supplementation had a tendency to decrease lean body mass (P < 0.1) and significantly increased backfat thickness (P < 0.05), but it did not affect growth performance. TMAO significantly increased total protein (TP) concentration, and reduced alkaline phosphatase (ALP) concentration in serum (P < 0.05). TMAO increased the α diversity of the ileal microbiota community (P < 0.05), and it did not affect the colonic microbial community. TMAO supplementation significantly increased acetate content in the ileum, and Proteobacteria and Escherichia-Shigella were significantly enriched in the TMAO group (P < 0.05). In addition, TMAO decreased fat content, as well as the ratio of linoleic acid, n-6 polyunsaturated fatty acids (PUFA), and PUFA in the liver (P < 0.05). On the contrary, TMAO increased intramuscular fat content of the longissimus dorsi muscle, whereas the C18:2n6c ratio was increased, and the n-6 PUFA:PUFA ratio was decreased (P < 0.05). In vitro, 1 mM TMAO treatment significantly upregulated the expression of FASN and SREBP1 in C2C12 cells (P < 0.05). Nevertheless, TMAO also increased adipocyte area and decreased the CPT-1B expression in subcutaneous fat (P < 0.05). Taken together, TMAO supplementation regulated ileal microbial composition and acetate production, and regulated fat distribution and fatty acid composition in growing-finishing pigs. These results provide new insights for understanding the role of TMAO in humans and animals.

13.
Nat Commun ; 15(1): 2529, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514612

ABSTRACT

Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.


Subject(s)
Angiogenesis , Osteocytes , Osteocytes/metabolism , Endothelial Cells , Bone and Bones , Mitochondria
14.
Sci Total Environ ; 922: 171002, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38369141

ABSTRACT

Microplastics have been identified as an emerging pollutant that poses a risk to the aquatic environment, and it is a challenge to find a suitable removal process. Electrocatalytic oxidation (ECO) technology has shown promising performance in removing various persistent organic pollutants. In this study, we prepared a new anode for removing polystyrene microplastics (PS MPs) by ECO. Ti/La-Sb-SnO2 electrodes doped with the rare earth element La as the active layer were synthesized to enhance the electrocatalytic activity. The lifespan of the electrode was improved by doping Mn, Co, or Ru as an intermediate layer modification between the titanium (Ti) substrate and the La-Sb-SnO2 active layer, respectively. The experimental results indicated that the addition of three types of intermediate layers led to different degrees of decrease in the catalytic activity of the electrode and the degradation performance of PS MPs. The addition of the Co intermediate layer had a negligible effect on the catalytic activity and performance of the Ti/La-Sb-SnO2 anode for PS degradation. In addition, the electrode lifespan with Co intermediate layer was significantly prolonged, which was 4.54, 2.38, and 1.19 times higher than the electrode without intermediate layer and the electrode with Ru and Mn intermediate layer, respectively. Therefore, Co was determined to be the optimal choice as the intermediate layer, and the production technique for the Ti/La/Co-Sb-SnO2 anodes was carefully adjusted. The degradation efficiency of PS MPs was optimized at a heat treatment temperature of 400 °C and a Sn: Co material ratio of 5:1, with a removal rate of 28.0 %. The ECO treatment also resulted in more pronounced changes in the structure and functional groups of the MPs. Various alkyl cleavage and oxidation products were detected after the treatment, suggesting that the oxidant (hydroxyl radicals) strongly interacted with the MPs, leading to their degradation. Overall, this work provided a new insight into removing MPs in water through the use of modified electrodes.

15.
Sci Total Environ ; 918: 170666, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316310

ABSTRACT

Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.

16.
Neuroendocrinology ; 114(5): 411-422, 2024.
Article in English | MEDLINE | ID: mdl-38228117

ABSTRACT

INTRODUCTION: Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS: We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in the FAD4T mouse thyroid, bone marrow, and brain by further single-cell RNA sequencing (scRNA-seq) data of the bone marrow and brain. RESULTS: In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in the functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain, and bone marrow of FAD4T mice. CONCLUSIONS: Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.


Subject(s)
Aging , Alzheimer Disease , Disease Models, Animal , Presenilin-1 , Thyroid Hormones , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Aging/metabolism , Mice , Thyroid Hormones/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Thyroid Gland/metabolism , Mice, Transgenic , Brain/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male
17.
BMC Med Educ ; 24(1): 29, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178100

ABSTRACT

BACKGROUND: While laparoscopic assistance is often entrusted to less experienced individuals, such as residents, medical students, and operating room nurses, it is important to note that they typically receive little to no formal laparoscopic training. This deficiency can lead to poor visibility during minimally invasive surgery, thus increasing the risk of errors. Moreover, operating room nurses and medical students are currently not included as key users in structured laparoscopic training programs. OBJECTIVES: The aim of this study is to evaluate the laparoscopic skills of OR nurses, clinical medical postgraduate students, and residents before and after undergoing virtual reality training. Additionally, it aimed to compare the differences in the laparoscopic skills among different groups (OR nurses/Students/Residents) both before and after virtual reality training. METHODS: Operating room nurses, clinical medical postgraduate students and residents from a tertiary Grade A hospital in China in March 2022 were selected as participants. All participants were required to complete a laparoscopic simulation training course in 6 consecutive weeks. One task from each of the four training modules was selected as an evaluation indicator. A before-and-after self-control study was used to compare the basic laparoscopic skills of participants, and laparoscopic skill competency was compared between the groups of operating room nurses, clinical medical postgraduate students, and residents. RESULTS: Twenty-seven operating room nurses, 31 clinical medical postgraduate students, and 16 residents were included. The training course scores for the navigation training module, task training module, coordination training module, and surgical skills training module between different groups (operating room nurses/clinical medical postgraduate/residents) before laparoscopic simulation training was statistically significant (p < 0.05). After laparoscopic simulation training, there was no statistically significant difference in the training course scores between the different groups. The surgical level scores before and after the training course were compared between the operating room nurses, clinical medical postgraduate students, and residents and showed significant increases (p < 0.05). CONCLUSION: Our findings show a significant improvement in laparoscopic skills following virtual surgery simulation training across all participant groups. The integration of virtual surgery simulation technology in surgical training holds promise for bridging the gap in laparoscopic skill development among health care professionals.


Subject(s)
Internship and Residency , Laparoscopy , Simulation Training , Virtual Reality , Humans , Clinical Competence , Laparoscopy/education , Curriculum , Computer Simulation
18.
Sci Total Environ ; 916: 170257, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38253098

ABSTRACT

The mineralization of dissolved organic matter (DOM) in sediments is an important factor leading to the eutrophication of macrophyte-dominated lakes. However, the changes in the molecular characteristics of sediment-derived DOM during microbial degradation in macrophyte-dominated lakes are not well understood. In this study, the microbial degradation process of sediment-derived DOM in Lake Caohai under aerobic and hypoxic conditions was investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and metagenomics. The results revealed that the microbial degradation of sediment-derived DOM in macrophyte-dominated lakes was more intense under aerobic conditions. The microorganisms mainly metabolized the protein-like substances in the macrophyte-dominated lakes, and the carbohydrate-active enzyme genes and protein/lipid-like degradation genes played key roles in sediment-derived DOM degradation. Organic compounds with high H/C ratios such as lipids, carbohydrates, and protein/lipid-like compounds were preferentially removed by microorganisms during microbial degradation. Meanwhile, there was an increase in the abundance of organic molecular formula with a high aromaticity such as tannins and unsaturated hydrocarbons with low molecular weight and low double bond equivalent. In addition, aerobic/hypoxic environments can alter microbial metabolic pathways of sediment-derived DOM by affecting the relative abundance of microbial communities (e.g., Gemmatimonadetes and Acidobacteria) and functional genes (e.g., ABC.PE.P1 and ABC.PE.P) in macrophyte-dominated lakes. The abundances of lipids, unsaturated hydrocarbons, and protein compounds in aerobic environments decreased by 58 %, 50 %, and 44 %, respectively, compared to in hypoxic environments under microbial degradation. The results of this study deepen our understanding of DOM biodegradation in macrophyte-dominated lakes under different redox environments and provide new insights into nutrients releases from sediment and continuing eutrophication in macrophyte-dominated lakes.


Subject(s)
Dissolved Organic Matter , Water Pollutants, Chemical , Lakes/chemistry , Water Pollutants, Chemical/analysis , Hydrocarbons/analysis , Lipids , China
19.
Phys Chem Chem Phys ; 26(3): 1860-1868, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170855

ABSTRACT

Zinc ion capacitors (ZICs) have shown potential for breaking the energy density ceiling of traditional supercapacitors (SCs) via appropriate device design. Nevertheless, a significant challenge remains in advancing ZIC positive electrode materials with excellent conductivity, high specific capacitance, and reliable cycle stability. A highly attractive option for carbon-based electrode materials is reduced graphene oxide (RGO) due to its vast specific surface area, prominent porosity, and 3D cross-linked frame. However, the tight stacking of RGO sheets driven by van der Waals forces can restrict active sites, decrease specific capacitance, and elevate electrochemical impedance. To overcome these challenges, 3D defective RGO (DRGO) hydrogels were prepared by a metal Co cocatalytic gasification reaction. This method produced mesoporous defects on the surface of RGO hydrogels via a low-temperature hydrothermal self-assembly strategy. The surface of the layer has a wide and uniform distribution, which can offer abundant redox active sites, rich ion transfer channels, and fast reaction kinetics. In this work, 3D DRGO//Zn exhibited a wide operating window (0-1.8 V), high specific capacitance (189.39 F g-1 at 1 A g-1), outstanding energy density (85.23 W h kg-1 at 960.31 W kg-1; 52.36 W h kg-1 at 17454.87 W kg-1), and persistent cycling life (98.86% initial capacitance retention after 10 000 cycles at 10 A g-1). This study emphasizes the device design of ZIC and promising prospects of using 3D DRGO hydrogel as a feasible positive electrode for ZIC.

20.
J Sci Food Agric ; 104(4): 2262-2271, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37947497

ABSTRACT

BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Melatonin , Humans , Animals , Swine , Antioxidants/pharmacology , Antioxidants/metabolism , Diquat/adverse effects , Melatonin/pharmacology , Dietary Supplements , Growth Disorders
SELECTION OF CITATIONS
SEARCH DETAIL