Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965385

ABSTRACT

Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis-regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme.

2.
Mol Cell ; 84(12): 2238-2254.e11, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870936

ABSTRACT

Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.


Subject(s)
Enhancer Elements, Genetic , Histone Demethylases , Histone Demethylases/metabolism , Histone Demethylases/genetics , Humans , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Protein Binding , Mice , Cell Differentiation , Gene Silencing
3.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798357

ABSTRACT

Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function 1 . As a substrate receptor of the CULLIN3-RBX1 E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma (MB) 2 , the most common embryonal brain tumor in children, and pineoblastoma 3 . These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST 4 . However, their mechanism of action remains unresolved. Here, we elucidate the mechanistic basis by which KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2, the direct neomorphic target of the substrate receptor. Using deep mutational scanning, we systematically map the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy (cryo-EM) analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat propeller domains. The interface between HDAC1 and one of the KBTBD4 propellers is stabilized by the MB mutations, which directly insert a bulky side chain into the active site pocket of HDAC1. Our structural and mutational analyses inform how this hotspot E3-neo-substrate interface can be chemically modulated. First, our results unveil a converging shape complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface, the aberrant degradation of CoREST, and the growth of KBTBD4-mutant MB models. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions and pharmacological strategies to modulate their action for therapeutic applications.

4.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798619

ABSTRACT

UM171 is a potent small molecule agonist of ex vivo human hematopoietic stem cell (HSC) self-renewal, a process that is tightly controlled by epigenetic regulation. By co-opting KBTBD4, a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, UM171 promotes the degradation of members of the CoREST transcriptional corepressor complex, thereby limiting HSC attrition. However, the direct target and mechanism of action of UM171 remain unclear. Here, we reveal that UM171 acts as a molecular glue to induce high-affinity interactions between KBTBD4 and HDAC1 to promote the degradation of select HDAC1/2 corepressor complexes. Through proteomics and chemical inhibitor studies, we discover that the principal target of UM171 is HDAC1/2. Cryo-electron microscopy (cryo-EM) analysis of dimeric KBTBD4 bound to UM171 and the LSD1-HDAC1-CoREST complex unveils an unexpected asymmetric assembly, in which a single UM171 molecule enables a pair of KBTBD4 KELCH-repeat propeller domains to recruit HDAC1 by clamping on its catalytic domain. One of the KBTBD4 propellers partially masks the rim of the HDAC1 active site pocket, which is exploited by UM171 to extend the E3-neo-substrate interface. The other propeller cooperatively strengthens HDAC1 binding via a separate and distinct interface. The overall neomorphic interaction is further buttressed by an endogenous cofactor of HDAC1-CoREST, inositol hexakisphosphate, which makes direct contacts with KBTBD4 and acts as a second molecular glue. The functional relevance of the quaternary complex interaction surfaces defined by cryo-EM is demonstrated by in situ base editor scanning of KBTBD4 and HDAC1. By delineating the direct target of UM171 and its mechanism of action, our results reveal how the cooperativity offered by a large dimeric CRL E3 family can be leveraged by a small molecule degrader and establish for the first time a dual molecular glue paradigm.

5.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961560

ABSTRACT

The interchromatin space in the cell nucleus contains various membrane-less nuclear bodies. Recent findings indicate that nuclear speckles, comprising a distinct nuclear body, exhibit interactions with certain chromatin regions in a ground state. Key questions are how this ground state of chromatin-nuclear speckle association is established and what are the gene regulatory roles of this layer of nuclear organization. We report here that chromatin structural factors CTCF and cohesin are required for full ground state association between DNA and nuclear speckles. Disruption of ground state DNA-speckle contacts via either CTCF depletion or cohesin depletion had minor effects on basal level expression of speckle-associated genes, however we show strong negative effects on stimulus-dependent induction of speckle-associated genes. We identified a putative speckle targeting motif (STM) within cohesin subunit RAD21 and demonstrated that the STM is required for chromatin-nuclear speckle association. In contrast to reduction of CTCF or RAD21, depletion of the cohesin releasing factor WAPL stabilized cohesin on chromatin and DNA-speckle contacts, resulting in enhanced inducibility of speckle-associated genes. In addition, we observed disruption of chromatin-nuclear speckle association in patient derived cells with Cornelia de Lange syndrome (CdLS), a congenital neurodevelopmental diagnosis involving defective cohesin pathways, thus revealing nuclear speckles as an avenue for therapeutic inquiry. In summary, our findings reveal a mechanism to establish the ground organizational state of chromatin-speckle association, to promote gene inducibility, and with relevance to human disease.

6.
ACS Chem Biol ; 18(9): 2030-2038, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37603861

ABSTRACT

DNA methyltransferase 3A (DNMT3A) is a de novo cytosine methyltransferase responsible for establishing proper DNA methylation during mammalian development. Loss-of-function (LOF) mutations to DNMT3A, including the hotspot mutation R882H, frequently occur in developmental growth disorders and hematological diseases, including clonal hematopoiesis and acute myeloid leukemia. Accordingly, identifying mechanisms that activate DNMT3A is of both fundamental and therapeutic interest. Here, we applied a base editor mutational scanning strategy with an improved DNA methylation reporter to systematically identify DNMT3A activating mutations in cells. By integrating an optimized cellular recruitment strategy with paired isogenic cell lines with or without the LOF hotspot R882H mutation, we identify and validate three distinct hyperactivating mutations within or interacting with the regulatory ADD domain of DNMT3A, nominating these regions as potential functional target sites for pharmacological intervention. Notably, these mutations are still activating in the context of a heterozygous R882H mutation. Altogether, we showcase the utility of base editor scanning for discovering functional regions of target proteins.


Subject(s)
DNA Methyltransferase 3A , Gain of Function Mutation , Animals , Mutation , DNA Modification Methylases , Methyltransferases , Mammals
7.
Mol Cell ; 83(13): 2167-2187, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37390819

ABSTRACT

A fundamental challenge in biology is understanding the molecular details of protein function. How mutations alter protein activity, regulation, and response to drugs is of critical importance to human health. Recent years have seen the emergence of pooled base editor screens for in situ mutational scanning: the interrogation of protein sequence-function relationships by directly perturbing endogenous proteins in live cells. These studies have revealed the effects of disease-associated mutations, discovered novel drug resistance mechanisms, and generated biochemical insights into protein function. Here, we discuss how this "base editor scanning" approach has been applied to diverse biological questions, compare it with alternative techniques, and describe the emerging challenges that must be addressed to maximize its utility. Given its broad applicability toward profiling mutations across the proteome, base editor scanning promises to revolutionize the investigation of proteins in their native contexts.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Mutation , Proteome/genetics , Amino Acid Sequence
8.
Cell ; 186(11): 2361-2379.e25, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37192619

ABSTRACT

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.


Subject(s)
Antineoplastic Agents , Reactive Oxygen Species , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Cell Nucleus/metabolism , Humans
9.
Nat Chem Biol ; 19(9): 1105-1115, 2023 09.
Article in English | MEDLINE | ID: mdl-36973442

ABSTRACT

Drug addiction, a phenomenon where cancer cells paradoxically depend on continuous drug treatment for survival, has uncovered cell signaling mechanisms and cancer codependencies. Here we discover mutations that confer drug addiction to inhibitors of the transcriptional repressor polycomb repressive complex 2 (PRC2) in diffuse large B-cell lymphoma. Drug addiction is mediated by hypermorphic mutations in the CXC domain of the catalytic subunit EZH2, which maintain H3K27me3 levels even in the presence of PRC2 inhibitors. Discontinuation of inhibitor treatment leads to overspreading of H3K27me3, surpassing a repressive methylation ceiling compatible with lymphoma cell survival. Exploiting this vulnerability, we show that inhibition of SETD2 similarly induces the spread of H3K27me3 and blocks lymphoma growth. Collectively, our findings demonstrate that constraints on chromatin landscapes can yield biphasic dependencies in epigenetic signaling in cancer cells. More broadly, we highlight how approaches to identify drug addiction mutations can be leveraged to discover cancer vulnerabilities.


Subject(s)
Lymphoma , Neoplasms , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/metabolism , Lymphoma/genetics , Methylation , Neoplasms/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
10.
Elife ; 122023 02 10.
Article in English | MEDLINE | ID: mdl-36762644

ABSTRACT

Allostery enables dynamic control of protein function. A paradigmatic example is the tightly orchestrated process of DNA methylation maintenance. Despite the fundamental importance of allosteric sites, their identification remains highly challenging. Here, we perform CRISPR scanning on the essential maintenance methylation machinery-DNMT1 and its partner UHRF1-with the activity-based inhibitor decitabine to uncover allosteric mechanisms regulating DNMT1. In contrast to non-covalent DNMT1 inhibition, activity-based selection implicates numerous regions outside the catalytic domain in DNMT1 function. Through computational analyses, we identify putative mutational hotspots in DNMT1 distal from the active site that encompass mutations spanning a multi-domain autoinhibitory interface and the uncharacterized BAH2 domain. We biochemically characterize these mutations as gain-of-function, exhibiting increased DNMT1 activity. Extrapolating our analysis to UHRF1, we discern putative gain-of-function mutations in multiple domains, including key residues across the autoinhibitory TTD-PBR interface. Collectively, our study highlights the utility of activity-based CRISPR scanning for nominating candidate allosteric sites, and more broadly, introduces new analytical tools that further refine the CRISPR scanning framework.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , DNA (Cytosine-5-)-Methyltransferases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics
11.
Nat Commun ; 14(1): 448, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707513

ABSTRACT

Chromatin regulators are frequently mutated in human cancer and are attractive drug targets. They include diverse proteins that share functional domains and assemble into related multi-subunit complexes. To investigate functional relationships among these regulators, here we apply combinatorial CRISPR knockouts (KOs) to test over 35,000 gene-gene pairings in leukemia cells, using a library of over 300,000 constructs. Top pairs that demonstrate either compensatory non-lethal interactions or synergistic lethality enrich for paralogs and targets that occupy the same protein complex. The screen highlights protein complex dependencies not apparent in single KO screens, for example MCM histone exchange, the nucleosome remodeling and deacetylase (NuRD) complex, and HBO1 (KAT7) complex. We explore two approaches to NuRD complex inactivation. Paralog and non-paralog combinations of the KAT7 complex emerge as synergistic lethal and specifically nominate the ING5 PHD domain as a potential therapeutic target when paired with other KAT7 complex member losses. These findings highlight the power of combinatorial screening to provide mechanistic insight and identify therapeutic targets within redundant networks.


Subject(s)
Chromatin , Leukemia , Humans , Chromatin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Chromatin Assembly and Disassembly , Leukemia/drug therapy , Leukemia/genetics , Histone Acetyltransferases/metabolism
12.
Nat Chem Biol ; 19(2): 176-186, 2023 02.
Article in English | MEDLINE | ID: mdl-36266353

ABSTRACT

DNA methylation is critical for regulating gene expression, necessitating its accurate placement by enzymes such as the DNA methyltransferase DNMT3A. Dysregulation of this process is known to cause aberrant development and oncogenesis, yet how DNMT3A is regulated holistically by its three domains remains challenging to study. Here, we integrate base editing with a DNA methylation reporter to perform in situ mutational scanning of DNMT3A in cells. We identify mutations throughout the protein that perturb function, including ones at an interdomain interface that block allosteric activation. Unexpectedly, we also find mutations in the PWWP domain, a histone reader, that modulate enzyme activity despite preserving histone recognition and protein stability. These effects arise from altered PWWP domain DNA affinity, which we show is a noncanonical function required for full activity in cells. Our findings highlight mechanisms of interdomain crosstalk and demonstrate a generalizable strategy to probe sequence-activity relationships of nonessential chromatin regulators.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , Histones , Histones/genetics , Histones/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Protein Binding/genetics , DNA/genetics , DNA/metabolism , DNA Methylation
13.
Curr Protoc ; 2(12): e614, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36541895

ABSTRACT

CRISPR-Cas9 genome editing technologies have enabled complex genetic manipulations in situ, including large-scale, pooled screening approaches to probe and uncover mechanistic insights across various biological processes. The RNA-programmable nature of CRISPR-Cas9 greatly empowers tiling mutagenesis approaches to elucidate molecular details of protein function, in particular the interrogation of mechanisms of resistance to small molecules, an approach termed CRISPR-suppressor scanning. In a typical CRISPR-suppressor scanning experiment, a pooled library of single-guide RNAs is designed to target across the coding sequence(s) of one or more genes, enabling the Cas9 nuclease to systematically mutate the targeted proteins and generate large numbers of diverse protein variants in situ. This cellular pool of protein variants is then challenged with drug treatment to identify mutations conferring a fitness advantage. Drug-resistance mutations identified with this approach can not only elucidate drug mechanism of action but also reveal deeper mechanistic insights into protein structure-function relationships. In this article, we outline the framework for a standard CRISPR-suppressor scanning experiment. Specifically, we provide instructions for the design and construction of a pooled sgRNA library, execution of a CRISPR-suppressor scanning screen, and basic computational analysis of the resulting data. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Design and generation of a pooled sgRNA library Support Protocol 1: sgRNA library design using command-line CRISPOR Support Protocol 2: Production and titering of pooled sgRNA library lentivirus Basic Protocol 2: Execution and analysis of a CRISPR-suppressor scanning experiment.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Mutation , Gene Library , Lentivirus/genetics
14.
Nat Commun ; 13(1): 4199, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35859152

ABSTRACT

The genome can be divided into two spatially segregated compartments, A and B, which partition active and inactive chromatin states. While constitutive heterochromatin is predominantly located within the B compartment near the nuclear lamina, facultative heterochromatin marked by H3K27me3 spans both compartments. How epigenetic modifications, compartmentalization, and lamina association collectively maintain heterochromatin architecture remains unclear. Here we develop Lamina-Inducible Methylation and Hi-C (LIMe-Hi-C) to jointly measure chromosome conformation, DNA methylation, and lamina positioning. Through LIMe-Hi-C, we identify topologically distinct sub-compartments with high levels of H3K27me3 and differing degrees of lamina association. Inhibition of Polycomb repressive complex 2 (PRC2) reveals that H3K27me3 is essential for sub-compartment segregation. Unexpectedly, PRC2 inhibition promotes lamina association and constitutive heterochromatin spreading into H3K27me3-marked B sub-compartment regions. Consistent with this repositioning, genes originally marked with H3K27me3 in the B compartment, but not the A compartment, remain largely repressed, suggesting that constitutive heterochromatin spreading can compensate for H3K27me3 loss at a transcriptional level. These findings demonstrate that Polycomb sub-compartments and their antagonism with lamina association are fundamental features of genome structure. More broadly, by jointly measuring nuclear position and Hi-C contacts, our study demonstrates how compartmentalization and lamina association represent distinct but interdependent modes of heterochromatin regulation.


Subject(s)
Heterochromatin , Histones , Cell Nucleus/metabolism , DNA Methylation , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
15.
ACS Cent Sci ; 8(4): 417-429, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35505873

ABSTRACT

Targeted protein degradation (TPD) holds immense promise for drug discovery, but mechanisms of acquired resistance to degraders remain to be fully identified. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)-suppressor scanning to identify mechanistic classes of drug resistance mutations to molecular glue degraders in GSPT1 and RBM39, neosubstrates targeted by E3 ligase substrate receptors cereblon and DCAF15, respectively. While many mutations directly alter the ternary complex heterodimerization surface, distal resistance sites were also identified. Several distal mutations in RBM39 led to modest decreases in degradation, yet can enable cell survival, underscoring how small differences in degradation can lead to resistance. Integrative analysis of resistance sites across GSPT1 and RBM39 revealed varying levels of sequence conservation and mutational constraint that control the emergence of different resistance mechanisms, highlighting that many regions co-opted by TPD are nonessential. Altogether, our study identifies common resistance mechanisms for molecular glue degraders and outlines a general approach to survey neosubstrate requirements necessary for effective degradation.

16.
Nat Chem Biol ; 17(12): 1219-1229, 2021 12.
Article in English | MEDLINE | ID: mdl-34799733

ABSTRACT

Small molecule drugs form the backbone of modern medicine's therapeutic arsenal. Often less appreciated is the role that small molecules have had in advancing basic biology. In this Review, we highlight how resistance mutations have unlocked the potential of small molecule chemical probes to discover new biology. We describe key instances in which resistance mutations and related genetic variants yielded foundational biological insight and categorize these examples on the basis of their role in the discovery of novel molecular mechanisms, protein allostery, physiology and cell signaling. Next, we suggest ways in which emerging technologies can be leveraged to systematically introduce and characterize resistance mutations to catalyze basic biology research and drug discovery. By recognizing how resistance mutations have propelled biological discovery, we can better harness new technologies and maximize the potential of small molecules to advance our understanding of biology and improve human health.


Subject(s)
Alleles , Mutant Proteins/genetics , Animals , Diazepam/pharmacology , Drug Discovery , Drug Resistance , Humans , Mutant Proteins/pharmacology , Mutation , Pharmaceutical Preparations , Protein Binding , Protein Conformation , Signal Transduction , Sulfonamides/metabolism , Sulfonamides/pharmacology
17.
J Am Chem Soc ; 143(34): 13473-13477, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34403584

ABSTRACT

Employed for over half a century to study protein synthesis, cycloheximide (CHX, 1) is a small molecule natural product that reversibly inhibits translation elongation. More recently, CHX has been applied to ribosome profiling, a method for mapping ribosome positions on mRNA genome-wide. Despite CHX's extensive use, CHX treatment often results in incomplete translation inhibition due to its rapid reversibility, prompting the need for improved reagents. Here, we report the concise synthesis of C13-amide-functionalized CHX derivatives with increased potencies toward protein synthesis inhibition. Cryogenic electron microscopy (cryo-EM) revealed that C13-aminobenzoyl CHX (8) occupies the same site as CHX, competing with the 3' end of E-site tRNA. We demonstrate that 8 is superior to CHX for ribosome profiling experiments, enabling more effective capture of ribosome conformations through sustained stabilization of polysomes. Our studies identify powerful chemical reagents to study protein synthesis and reveal the molecular basis of their enhanced potency.


Subject(s)
Biological Products/pharmacology , Cycloheximide/analogs & derivatives , Peptide Chain Elongation, Translational/drug effects , Amides/chemistry , Biological Products/chemistry , Cycloheximide/metabolism , Cycloheximide/pharmacology , HEK293 Cells , Humans , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribosomes/metabolism
18.
Cancer Discov ; 10(7): 980-997, 2020 07.
Article in English | MEDLINE | ID: mdl-32269030

ABSTRACT

Epigenetic regulators, when genomically altered, may become driver oncogenes that mediate otherwise unexplained pro-oncogenic changes lacking a clear genetic stimulus, such as activation of the WNT/ß-catenin pathway in melanoma. This study identifies previously unrecognized recurrent activating mutations in the G9a histone methyltransferase gene, as well as G9a genomic copy gains in approximately 26% of human melanomas, which collectively drive tumor growth and an immunologically sterile microenvironment beyond melanoma. Furthermore, the WNT pathway is identified as a key tumorigenic target of G9a gain-of-function, via suppression of the WNT antagonist DKK1. Importantly, genetic or pharmacologic suppression of mutated or amplified G9a using multiple in vitro and in vivo models demonstrates that G9a is a druggable target for therapeutic intervention in melanoma and other cancers harboring G9a genomic aberrations. SIGNIFICANCE: Oncogenic G9a abnormalities drive tumorigenesis and the "cold" immune microenvironment by activating WNT signaling through DKK1 repression. These results reveal a key druggable mechanism for tumor development and identify strategies to restore "hot" tumor immune microenvironments.This article is highlighted in the In This Issue feature, p. 890.


Subject(s)
Carcinogenesis/genetics , Gain of Function Mutation/genetics , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/genetics , Oncogenes/genetics , Cell Line, Tumor , Humans , Mutation
20.
Nat Chem Biol ; 15(5): 529-539, 2019 05.
Article in English | MEDLINE | ID: mdl-30992567

ABSTRACT

Understanding the mechanism of small molecules is a critical challenge in chemical biology and drug discovery. Medicinal chemistry is essential for elucidating drug mechanism, enabling variation of small molecule structure to gain structure-activity relationships (SARs). However, the development of complementary approaches that systematically vary target protein structure could provide equally informative SARs for investigating drug mechanism and protein function. Here we explore the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML). Through this approach, termed CRISPR-suppressor scanning, we elucidate drug mechanism of action by showing that LSD1 enzyme activity is not required for AML survival and that LSD1 inhibitors instead function by disrupting interactions between LSD1 and the transcription factor GFI1B on chromatin. Our studies clarify how LSD1 inhibitors mechanistically operate in AML and demonstrate how CRISPR-suppressor scanning can uncover novel aspects of target biology.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Models, Molecular , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...