Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 20339, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37989857

ABSTRACT

Taste perception is crucial and impairments, which can be linked to pathologies, can lead to eating disorders. It is triggered by taste compounds stimulating receptors located on the tongue. However, the tongue is covered by a film containing saliva and microorganisms suspected to modulate the taste receptor environment. The present study aimed to elucidate the links between taste sensitivity (sweetness, sourness, bitterness, saltiness, umami) and the salivary as well as the tongue microbiota using shotgun metagenomics. 109 bacterial species were correlated with at least one taste. Interestingly, when a species was correlated with at least two tastes, the correlations were unidirectional, indicating a putative global implication. Some Streptococcus, SR1 and Rickenellaceae species correlated with five tastes. When comparing both ecosystems, saliva appears to be a better taste predictor than tongue. This work shows the implication of the oral microbiota in taste and exhibits specificities depending on the ecosystem considered.


Subject(s)
Microbiota , Taste Perception , Humans , Taste , Saliva , Tongue
2.
Int. microbiol ; 26(3): 501-511, Ene-Agos, 2023. ilus, graf, tab
Article in English | IBECS | ID: ibc-223977

ABSTRACT

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.(AU)


Subject(s)
Humans , Computational Biology/methods , Clostridium tyrobutyricum , Oxidation , Lactic Acid , Microbiology , Microbiological Techniques
3.
Int Microbiol ; 26(3): 501-511, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36609955

ABSTRACT

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.


Subject(s)
Clostridium tyrobutyricum , Fermentation , Clostridium tyrobutyricum/genetics , Clostridium tyrobutyricum/metabolism , Metabolic Flux Analysis , Carbon Dioxide/metabolism , Phylogeny , Butyrates/metabolism , Acetates/metabolism , Lactates/metabolism , Hydrogen/metabolism , Computational Biology , Carbon/metabolism
4.
Int J Food Microbiol ; 350: 109242, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34044228

ABSTRACT

Lactic acid fermentation is a traditional process to preserve foods and to modify their organoleptic properties. This process is generally conducted in a spontaneous way, allowing indigenous lactic acid bacteria (LAB) of the matrix and of the environment to compete and grow. The aim of this study was to better characterise LAB strains ability to modify aroma profiles in fruit and vegetable matrices, by focusing on two key enzymatic activities: ß-glucosidase and alcohol dehydrogenase (ADH). Firstly, 200 LAB isolated from Cambodian and Vietnamese fermented foods were screened for their ß-glucosidase activity and duplicate isolates identified through RAPD-PCR analysis were discarded. Thereby, 40 strains were found positive for ß-glucosidase using p-nitrophenyl-ß-D-glucopyranoside as substrate. Among them, 14 displayed an activity greater than 10 nmol/min/mg dry cell. Thirteen were identified as Lactiplantibacillus (L.) plantarum and one as L. pentosus. Secondly, four strains of different phenotypes for ß-glucosidase activity were tested for ADH activity. The highest reduction ability for hexanal and (E)-2-hexenal was obtained for Limosilactobacillus (L.) fermentum V013-1A for which no ß-glucosidase activity was detectable. The three other strains (L. plantarum C022-2B, C022-3B, and V0023-4B2) exhibited a lower reduction ability and only for hexanal. Thirdly, mashed tomatoes were fermented with these four strains individually to evaluate their ability to release volatile compounds from the tomato precursors. Fifty-eight volatile compounds were identified and quantified by HS-SPME/GC-MS. Untreated tomatoes were rich in aldehydes. The tomatoes fermented with L. plantarum strains were rich in ketones whereas those with L. fermentum were rich in alcohols. However, for the generation of terpenoids that provide flower and fruit flavours, our screening of ß-glucosidase activity was not able to explain the differences among the strains. For ADH activity, L. fermentum exhibited a high activity in fermentation as most of the target aldehydes and ketones disappeared and were replaced by their corresponding alcohols. The L. plantarum strains exhibited a lower activity but with an important substrate-selectivity diversity. A better knowledge of the functionality of each LAB strain in the food matrix will permit to predict and shape the aroma profiles of fermented food.


Subject(s)
Alcohol Dehydrogenase/metabolism , Fermented Foods/microbiology , Fruit/microbiology , Lactobacillales/metabolism , Vegetables/microbiology , beta-Glucosidase/metabolism , Bioreactors/microbiology , Fermentation , Fermented Foods/analysis , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Lactic Acid/analysis , Lactobacillales/isolation & purification , Odorants/analysis , Random Amplified Polymorphic DNA Technique
5.
Front Microbiol ; 11: 156, 2020.
Article in English | MEDLINE | ID: mdl-32194510

ABSTRACT

The cell surface is the primary recognition site between the bacterium and the host. An operon of three genes, LSEI_0219 (cwaR), LSEI_0220 (cwaS), and LSEI_0221 (ldcA), has been previously identified as required for the establishment of Lactobacillus paracasei in the gut. The genes cwaR and cwaS encode a predicted two-component system (TCS) and ldcA a predicted D-alanyl-D-alanine carboxypeptidase which is a peptidoglycan (PG) biosynthesis enzyme. We explored the functionality and the physiological role of these three genes, particularly their impact on the bacterial cell wall architecture and on the bacterial adaptation to environmental perturbations in the gut. The functionality of CwaS/R proteins as a TCS has been demonstrated by biochemical analysis. It is involved in the transcriptional regulation of several genes of the PG biosynthesis. Analysis of the muropeptides of PG in mutants allowed us to re-annotate LSEI_0221 as a putative L,D-carboxypeptidase (LdcA). The absence of this protein coincided with a decrease of two surface antigens: LSEI_0020, corresponding to p40 or msp2 whose implication in the host epithelial homeostasis has been recently studied, and LSEI_2029 which has never been functionally characterized. The inactivation of each of these three genes induces susceptibility to antimicrobial peptides (hBD1, hBD2, and CCL20), which could be the main cause of the gut establishment deficiency. Thus, this operon is necessary for the presence of two surface antigens and for a suitable cell wall architecture.

6.
Cell Host Microbe ; 27(3): 358-375.e7, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32101704

ABSTRACT

Despite the recognized capacity of the gut microbiota to regulate intestinal lipid metabolism, the role of specific commensal species remains undefined. Here, we aimed to understand the bacterial effectors and molecular mechanisms by which Lactobacillus paracasei and Escherichia coli regulate lipid metabolism in enterocytes. We show that L-lactate produced by L. paracasei inhibits chylomicron secretion from enterocytes and promotes lipid storage by a mechanism involving L-lactate absorption by enterocytes, its conversion to malonyl-CoA, and the subsequent inhibition of lipid beta-oxidation. In contrast, acetate produced by E. coli also inhibits chylomicron secretion by enterocytes but promotes lipid oxidation by a mechanism involving acetate absorption by enterocytes, its metabolism to acetyl-CoA and AMP, and the subsequent upregulation of the AMPK/PGC-1α/PPARα pathway. Our study opens perspectives for developing specific bacteria- and metabolite-based therapeutic interventions against obesity, atherosclerosis, and malnutrition by targeting lipid metabolism in enterocytes.


Subject(s)
Enterocytes/metabolism , Escherichia coli/metabolism , Fermentation , Lacticaseibacillus paracasei/metabolism , Lipid Metabolism , Symbiosis , Animals , Cell Line , Chylomicrons , Enterocytes/microbiology , Female , Intestines/microbiology , Mice, Inbred C57BL
7.
Food Microbiol ; 85: 103301, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31500710

ABSTRACT

Lactobacillus paracasei is able to persist in a variety of natural and technological environments despite physico-chemical perturbations, in particular alternations between desiccation and rehydration. However, the way in which it adapts to hydric fluctuations and the genetic determinants involved are not clearly understood. To identify the genes involved in adaptation to desiccation, an annotated library of L. paracasei random transposon mutants was screened for viability after desiccation (25% relative humidity, 25 °C). We found 16 genes that have not been described as being involved in this response. Most of them are linked to either the transport of molecules or to cell wall structure and function. Our screening also identified genes encoding DNA related enzymes and an alarmone necessary for L. paracasei survival. Subsequently, the expression of the identified genes was measured at five stages of the dehydration-rehydration process to decipher the chronology of genetic mechanisms. They were classified into four different transcriptional profiles: genes upregulated during both desiccation and rehydration phases, genes upregulated during the desiccation phase only, genes downregulated during both desiccation and rehydration and genes downregulated only during the rehydration stage. Thus, genetic response to hydric fluctuations seems to occur during desiccation and can continue or not during rehydration. The genes identified should contribute to improve the stabilization of Lactobacillus starters in dry state.


Subject(s)
Desiccation , Fluid Therapy , Lacticaseibacillus paracasei/genetics , Adaptation, Physiological , Down-Regulation , Gene Expression Profiling , Lacticaseibacillus paracasei/physiology , Up-Regulation , Water
8.
Front Microbiol ; 9: 2278, 2018.
Article in English | MEDLINE | ID: mdl-30374334

ABSTRACT

Fermentation has been used for centuries to produce food in South-East Asia and some foods of this region are famous in the whole world. However, in the twenty first century, issues like food safety and quality must be addressed in a world changing from local business to globalization. In Western countries, the answer to these questions has been made through hygienisation, generalization of the use of starters, specialization of agriculture and use of long-distance transportation. This may have resulted in a loss in the taste and typicity of the products, in an extensive use of antibiotics and other chemicals and eventually, in a loss in the confidence of consumers to the products. The challenges awaiting fermentation in South-East Asia are thus to improve safety and quality in a sustainable system producing tasty and typical fermented products and valorising by-products. At the end of the "AsiFood Erasmus+ project" (www.asifood.org), the goal of this paper is to present and discuss these challenges as addressed by the Tropical Fermentation Network, a group of researchers from universities, research centers and companies in Asia and Europe. This paper presents current actions and prospects on hygienic, environmental, sensorial and nutritional qualities of traditional fermented food including screening of functional bacteria and starters, food safety strategies, research for new antimicrobial compounds, development of more sustainable fermentations and valorisation of by-products. A specificity of this network is also the multidisciplinary approach dealing with microbiology, food, chemical, sensorial, and genetic analyses, biotechnology, food supply chain, consumers and ethnology.

9.
Biomed Res Int ; 2018: 2838052, 2018.
Article in English | MEDLINE | ID: mdl-30013981

ABSTRACT

The objective of this work was to investigate whether the biological film lining the tongue may play a role in taste perception. For that purpose, the tongue film and saliva of 21 healthy subjects were characterized, focusing on microorganisms and their main metabolic substrates and products. In parallel, taste sensitivity was evaluated using a test recently developed by our group, and the links between biological and sensory data were explored by a correlative approach. Saliva and tongue film differed significantly in biochemical composition (proportions of glucose, fructose, sucrose, and lactic, butyric, and acetic acids) and in microbiological profiles: compared to saliva, tongue film was characterized by significantly lower proportions of Bacteroidetes (p<0.001) and its main genus Prevotella (p<0.01) and significantly higher proportions of Firmicutes (p<0.01), Actinobacteria (p<0.001), and the genus Streptococcus (p<0.05). Generic taste sensitivity was linked to biological variables in the two compartments, but variables that appeared influent in saliva (flow, organic acids, proportion of Actinobacteria and Firmicutes) and in tongue film (sugars and proportions of Bacteroidetes) were not the same. This study points to two interesting areas in taste research: the oral microbiome and the specific characterization of the film lining the tongue.


Subject(s)
Microbiota , Taste , Tongue/microbiology , Humans , Saliva/chemistry , Saliva/microbiology , Taste Perception , Tongue/chemistry
10.
Front Microbiol ; 9: 535, 2018.
Article in English | MEDLINE | ID: mdl-29662477

ABSTRACT

Lactic acid bacteria (LAB) are associated with various plant, animal, and human niches and are also present in many fermented foods and beverages. Thus, they are subjected to several stress conditions and have developed advanced response mechanisms to resist, adapt, and grow. This work aimed to identify the genes involved in some stress adaptation mechanisms in LAB. For this purpose, global reverse genetics was applied by screening a library of 1287 Lactobacillus paracasei transposon mutants for mild monofactorial stresses. This library was submitted independently to heat (52°C, 30 min), ethanol (170 g.L-1, 30 min), salt (NaCl 0.8 M, 24 h), acid (pH 4.5, 24 h), and oxidative (2 mM H2O2, 24 h) perturbations which trigger mild monofactorial stresses compatible with bacterial adaptation. Stress sensitivity of mutants was determined either by evaluating viability using propidium iodide (PI) staining, or by following growth inhibition through turbidity measurement. The screening for heat and ethanol stresses lead respectively to the identification of 63 and 27 genes/putative promoters whose disruption lead to an increased sensitivity. Among them, 14 genes or putative promoters were common for both stresses. For salt, acid and oxidative stresses, respectively 8, 6, and 9 genes or putative promoters were identified as essential for adaptation to these unfavorable conditions, with only three genes common to at least two stresses. Then, RT-qPCR was performed on selected stress response genes identified by mutant screenings in order to evaluate if their expression was modified in response to stresses in the parental strain. Eleven genes (membrane, transposase, chaperone, nucleotide and carbohydrate metabolism, and hypothetical protein genes) were upregulated during stress adaptation for at least two stresses. Seven genes, encoding membrane functions, were upregulated in response to a specific stress and thus could represent potential transcriptomic biomarkers. The results highlights that most of the genes identified by global reverse genetics are specifically required in response to one stress and that they are not differentially transcribed during stress in the parental strain. Most of these genes have not been characterized as stress response genes and provide new insights into the adaptation of lactic acid bacteria to their environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...