Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Toxicon ; 238: 107568, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38110040

ABSTRACT

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.


Subject(s)
Animals, Poisonous , Arthropod Venoms , Arthropods , Joint Diseases , Scorpion Venoms , Scorpions , Viperidae , Animals , Humans , Interleukin-10 , Interleukin-6 , Interleukin-8 , Snake Venoms/chemistry , Cytokines , Tumor Necrosis Factor-alpha , Anti-Inflammatory Agents
2.
Toxicon, v. 238, 107568, fev. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5249

ABSTRACT

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.

3.
Arch Biochem Biophys ; 738: 109540, 2023 04.
Article in English | MEDLINE | ID: mdl-36746260

ABSTRACT

5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid. A high concentration of 5-ALA presents deleterious pro-oxidant potential. It can induce apoptosis, DNA damage, mitochondrial dysfunction, and altered expression of carcinogenesis-related proteins. Several hypotheses of the increased risk of HCC rely on the harmful effect of elevated 5-ALA in the liver of AIP patients, which could promote a pro-carcinogenic environment. We investigated the global transcriptional changes and perturbed molecular pathways in HepG2 cells following exposure to 5-ALA 25 mM for 2 h and 24 h using DNA microarray. Distinct transcriptome profiles were observed. 5-ALA '25 mM-2h' upregulated 10 genes associated with oxidative stress response and carcinogenesis. Enrichment analysis of differentially expressed genes by KEGG, Reactome, MetaCore™, and Gene Ontology, showed that 5-ALA '25 mM-24h' enriched pathways involved in drug detoxification, oxidative stress, DNA damage, cell death/survival, cell cycle, and mitochondria dysfunction corroborating the pro-oxidant properties of 5-ALA. Furthermore, our results disclosed other possible processes such as senescence, immune responses, endoplasmic reticulum stress, and also some putative effectors, such as sequestosome, osteopontin, and lon peptidase 1. This study provided additional knowledge about molecular mechanisms of 5-ALA toxicity which is essential to a deeper understanding of AIP and HCC pathophysiology. Furthermore, our findings can contribute to improving the efficacy of current therapies and the development of novel biomarkers and targets for diagnosis, prognosis, and therapeutic strategies for AHP/AIP and associated HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Porphyria, Acute Intermittent , Humans , Aminolevulinic Acid/metabolism , Aminolevulinic Acid/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Reactive Oxygen Species/metabolism , Liver Neoplasms/genetics , Transcriptome , Porphyria, Acute Intermittent/complications , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/metabolism , Carcinogenesis
4.
Arch Biochem Biophys, in press, 109540, fev. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4795

ABSTRACT

5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid. A high concentration of 5-ALA presents deleterious pro-oxidant potential. It can induce apoptosis, DNA damage, mitochondrial dysfunction, and altered expression of carcinogenesis-related proteins. Several hypotheses of the increased risk of HCC rely on the harmful effect of elevated 5-ALA in the liver of AIP patients, which could promote a pro-carcinogenic environment. We investigated the global transcriptional changes and perturbed molecular pathways in HepG2 cells following exposure to 5-ALA 25 mM for 2 h and 24 h using DNA microarray. Distinct transcriptome profiles were observed. 5-ALA ’25 mM-2h′ upregulated 10 genes associated with oxidative stress response and carcinogenesis. Enrichment analysis of differentially expressed genes by KEGG, Reactome, MetaCore™, and Gene Ontology, showed that 5-ALA ‘25 mM-24h’ enriched pathways involved in drug detoxification, oxidative stress, DNA damage, cell death/survival, cell cycle, and mitochondria dysfunction corroborating the pro-oxidant properties of 5-ALA. Furthermore, our results disclosed other possible processes such as senescence, immune responses, endoplasmic reticulum stress, and also some putative effectors, such as sequestosome, osteopontin, and lon peptidase 1. This study provided additional knowledge about molecular mechanisms of 5-ALA toxicity which is essential to a deeper understanding of AIP and HCC pathophysiology. Furthermore, our findings can contribute to improving the efficacy of current therapies and the development of novel biomarkers and targets for diagnosis, prognosis, and therapeutic strategies for AHP/AIP and associated HCC.

5.
Cells ; 11(2)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053363

ABSTRACT

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Subject(s)
Analgesics/analysis , Analgesics/pharmacology , Collagen/pharmacology , Drug Evaluation, Preclinical , Models, Biological , Sensory Receptor Cells/cytology , Animals , Antigens, Neoplasm/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Matrix/metabolism , Galectin 3/metabolism , Gene Expression Regulation/drug effects , Glycosylation/drug effects , Humans , Mitogen-Activated Protein Kinases/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurites/drug effects , Neurites/metabolism , Neurons/cytology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Substance P/metabolism , beta-Endorphin/metabolism
6.
Cells, v. 11, n. 2, 247, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4108

ABSTRACT

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (β-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.

7.
Front Immunol ; 11: 2191, 2020.
Article in English | MEDLINE | ID: mdl-33072083

ABSTRACT

Pararamosis is a disease that occurs due to contact with the hairs of the larval stage of the Brazilian moth Premolis semirufa. Envenomation induces osteoarticular alterations with cartilage impairment that resembles joint synovitis. Thus, the toxic venom present in the caterpillar hairs interferes with the phenotype of the cells present in the joints, resulting in inflammation and promoting tissue injury. Therefore, to address the inflammatory mechanisms triggered by envenomation, we studied the effects of P. semirufa hair extract on human chondrocytes. We have selected for the investigation, cytokines, chemokines, matrix metalloproteinases (MMPs), complement components, eicosanoids, and extracellular matrix (ECM) components related to OA and RA. In addition, for measuring protein-coding mRNAs of some molecules associated with osteoarthritis (OA) and rheumatoid arthritis (RA), reverse transcription (RT) was performed followed by quantitative real-time PCR (RT-qPCR) and we performed the RNA-sequencing (RNA-seq) analysis of the chondrocytes transcriptome. In the supernatant of cell cultures treated with the extract, we observed increased IL-6, IL-8, MCP-1, prostaglandin E2, metalloproteinases (MMP-1, MMP-2, MMP-3 and MMP-13), and complement system components (C3, C4, and C5). We noticed a significant decrease in both aggrecan and type II collagen and an increase in HMGB1 protein in chondrocytes after extract treatment. RNA-seq analysis of the chondrocyte transcriptome allowed us to identify important pathways related to the inflammatory process of the disease, such as the inflammatory response, chemotaxis of immune cells and extracellular matrix (ECM) remodeling. Thus, these results suggest that components of Premolis semirufa hair have strong inflammatory potential and are able to induce cartilage degradation and ECM remodeling, promoting a disease with an osteoarthritis signature. Modulation of the signaling pathways that were identified as being involved in this pathology may be a promising approach to develop new therapeutic strategies for the control of pararamosis and other inflammatory joint diseases.


Subject(s)
Cartilage/pathology , Chondrocytes/physiology , Inflammation/immunology , Joint Diseases/immunology , Osteoarthritis/genetics , Animals , Arthropod Venoms/metabolism , Cells, Cultured , Cytokines/metabolism , Extracellular Matrix/metabolism , Humans , Inflammation Mediators/metabolism , Joint Diseases/chemically induced , Moths/metabolism , Rainforest , Signal Transduction
8.
Sci Rep ; 10(1): 6388, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286411

ABSTRACT

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.


Subject(s)
Antineoplastic Agents/therapeutic use , Arthropod Proteins/therapeutic use , Horse Diseases/drug therapy , Melanoma/veterinary , Salivary Proteins and Peptides/therapeutic use , Animals , Cell Death/drug effects , Drug Discovery , Horses , Male , Melanoma/drug therapy , Tumor Microenvironment/drug effects
9.
Front Immunol, v. 11, 2191, 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3279

ABSTRACT

Pararamosis is a disease that occurs due to contact with the hairs of the larval stage of the Brazilian moth Premolis semirufa. Envenomation induces osteoarticular alterations with cartilage impairment that resembles joint synovitis. Thus, the toxic venom present in the caterpillar hairs interferes with the phenotype of the cells present in the joints, resulting in inflammation and promoting tissue injury. Therefore, to address the inflammatory mechanisms triggered by envenomation, we studied the effects of P. semirufa hair extract on human chondrocytes. We have selected for the investigation, cytokines, chemokines, matrix metalloproteinases (MMPs), complement components, eicosanoids, and extracellular matrix (ECM) components related to OA and RA. In addition, for measuring protein-coding mRNAs of some molecules associated with osteoarthritis (OA) and rheumatoid arthritis (RA), reverse transcription (RT) was performed followed by quantitative real-time PCR (RT-qPCR) and we performed the RNA-sequencing (RNA-seq) analysis of the chondrocytes transcriptome. In the supernatant of cell cultures treated with the extract, we observed increased IL-6, IL-8, MCP-1, prostaglandin E2, metalloproteinases (MMP-1, MMP-2, MMP-3 and MMP-13), and complement system components (C3, C4, and C5). We noticed a significant decrease in both aggrecan and type II collagen and an increase in HMGB1 protein in chondrocytes after extract treatment. RNA-seq analysis of the chondrocyte transcriptome allowed us to identify important pathways related to the inflammatory process of the disease, such as the inflammatory response, chemotaxis of immune cells and extracellular matrix (ECM) remodeling. Thus, these results suggest that components of Premolis semirufa hair have strong inflammatory potential and are able to induce cartilage degradation and ECM remodeling, promoting a disease with an osteoarthritis signature. Modulation of the signaling pathways that were identified as being involved in this pathology may be a promising approach to develop new therapeutic strategies for the control of pararamosis and other inflammatory joint diseases.

10.
Sci Rep, v. 10, 6388, abr. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3009

ABSTRACT

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.

11.
Sci. Rep. ; 10: 6388, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17607

ABSTRACT

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.

12.
Sci Rep ; 9(1): 3952, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850678

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.


Subject(s)
Cell Movement , DNA Helicases/physiology , DNA-Binding Proteins/physiology , Glioblastoma/pathology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation
13.
Sci Rep, v. 9, 3952, mar. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2685

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.

14.
Sci Rep ; 9: 3952, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15862

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.

15.
Parasit Vectors ; 11(1): 314, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29793520

ABSTRACT

BACKGROUND: Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. RESULTS: The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. CONCLUSIONS: The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.


Subject(s)
Arthropod Proteins/genetics , Camelus/parasitology , Ixodidae/genetics , Transcriptome , Animals , Female , Gene Expression Profiling/veterinary , Gene Library , High-Throughput Nucleotide Sequencing/veterinary , Host-Parasite Interactions , Ixodidae/chemistry , Male , Molecular Sequence Annotation , Phylogeny , Saliva/chemistry , Salivary Glands/chemistry , Sequence Analysis, DNA/veterinary , Tunisia
16.
Parasites Vectors ; 11: 314, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15079

ABSTRACT

Background: Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. Results: The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. Conclusions: The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.

17.
Parasites Vectors, v. 11, 314, 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2466

ABSTRACT

Background: Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. Results: The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. Conclusions: The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.

18.
Sci Rep ; 7(1): 1999, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28515464

ABSTRACT

Comorbid diabetes mellitus (DM) increases tuberculosis (TB) risk and adverse outcomes but the pathological interactions between DM and TB remain incompletely understood. We performed an integrative analysis of whole blood gene expression and plasma analytes, comparing South Indian TB patients with and without DM to diabetic and non-diabetic controls without TB. Luminex assay of plasma cytokines and growth factors delineated a distinct biosignature in comorbid TBDM in this cohort. Transcriptional profiling revealed elements in common with published TB signatures from cohorts that excluded DM. Neutrophil count correlated with the molecular degree of perturbation, especially in TBDM patients. Body mass index and HDL cholesterol were negatively correlated with molecular degree of perturbation. Diabetic complication pathways including several pathways linked to epigenetic reprogramming were activated in TBDM above levels observed with DM alone. Our data provide a rationale for trials of host-directed therapies in TBDM, targeting neutrophilic inflammation and diabetic complication pathways to address the greater morbidity and mortality associated with this increasingly prevalent dual burden of communicable and non-communicable diseases.


Subject(s)
Diabetes Complications , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Immunity , Tuberculosis/epidemiology , Tuberculosis/immunology , Biomarkers , Comorbidity , Computational Biology/methods , Cytokines/blood , Cytokines/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Disease Susceptibility , Female , Gene Expression Profiling , Humans , Immunity/genetics , India/epidemiology , Male , Proteome , Proteomics/methods , Public Health Surveillance , Risk Factors , Transcriptome , Tuberculosis/genetics , Tuberculosis/metabolism
19.
BMC Bioinformatics ; 16: 409, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26652707

ABSTRACT

BACKGROUND: Short and long range correlations in biological sequences are central in genomic studies of covariation. These correlations can be studied using mutual information because it measures the amount of information one random variable contains about the other. Here we present MIA (Mutual Information Analyzer) a user friendly graphic interface pipeline that calculates spectra of vertical entropy (VH), vertical mutual information (VMI) and horizontal mutual information (HMI), since currently there is no user friendly integrated platform that in a single package perform all these calculations. MIA also calculates Jensen-Shannon Divergence (JSD) between pair of different species spectra, herein called informational distances. Thus, the resulting distance matrices can be presented by distance histograms and informational dendrograms, giving support to discrimination of closely related species. RESULTS: In order to test MIA we analyzed sequences from Drosophila Adh locus, because the taxonomy and evolutionary patterns of different Drosophila species are well established and the gene Adh is extensively studied. The search retrieved 959 sequences of 291 species. From the total, 450 sequences of 17 species were selected. With this dataset MIA performed all tasks in less than three hours: gathering, storing and aligning fasta files; calculating VH, VMI and HMI spectra; and calculating JSD between pair of different species spectra. For each task MIA saved tables and graphics in the local disk, easily accessible for future analysis. CONCLUSIONS: Our tests revealed that the "informational model free" spectra may represent species signatures. Since JSD applied to Horizontal Mutual Information spectra resulted in statistically significant distances between species, we could calculate respective hierarchical clusters, herein called Informational Dendrograms (ID). When compared to phylogenetic trees all Informational Dendrograms presented similar taxonomy and species clusterization.


Subject(s)
Algorithms , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Computational Biology/methods , Computer Graphics , Drosophila Proteins/genetics , Drosophila/genetics , Animals , Entropy , Evolution, Molecular , Genome , Genomics , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phylogeny , Sequence Analysis, DNA/methods
20.
J. health inform ; 3(4): 164-168, out.-dez. 2011. tab
Article in Portuguese | LILACS | ID: lil-621827

ABSTRACT

Este artigo aborda aspectos sobre a construção de sistemas de apoio à decisão clínica (SADC) e relata o desenvolvimento histórico de sistemas que utilizam bases de conhecimento (BC) de forma a armazenar diretrizes digitais em saúde, ou seja, diretrizes interpretadas por computador (DIC). Também são apresentados os principais requisitos que definem um SADC.


The present paper focuses on the construction of Clinical Decision Support Systems (CDSS) and recounts the chronological development of systems that use Knowledge Bases (KB) in order to store digital guidelines, i.e. Computer-Interpretable Guidelines (CIG). We also present the main requirements that define a CDSS.


Este artículo se centra en la construcción de sistemas de apoyo de decisiones clínicas (SADC) y se relaciona con el desarrollo histórico de los sistemas que utilizan las bases de conocimiento para almacenar las directrices digitales de la salud, es decir, directrices interpretado por ordenador. También se presentan los principales requisitos que definen a un SADC.


Subject(s)
Knowledge Bases , Practice Guidelines as Topic , Decision Support Systems, Clinical
SELECTION OF CITATIONS
SEARCH DETAIL
...