Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Ecol ; 8: 41, 2020.
Article in English | MEDLINE | ID: mdl-33093960

ABSTRACT

BACKGROUND: The heterogeneous oceanographic conditions of continental shelf ecosystems result in a three-dimensionally patchy distribution of prey available to upper-trophic level predators. The association of bio-physical conditions with movement patterns of large marine predators has been demonstrated in diverse taxa. However, obtaining subsurface data that are spatio-temporally relevant to the decisions made by benthically-foraging species can be challenging. METHODS: Between 2009 and 2015, grey seals were captured on Sable Island, Nova Scotia, Canada during summer and fall and instrumented with high-resolution archival GPS tags. These tags recorded location data as well as depth (m), temperature (°C), and light level measurements during dives, until animals returned to the haulout site to breed. Hidden Markov models were used to predict apparent foraging along movement tracks for 79 individuals (59 females, 20 males) every 3 h. In situ measurements were used to estimate chlorophyll-a concentration (mg m- 3) and temperature within the upper-water column (50 m) and temperature and depth at the bottom of dives. As chlorophyll-a could only be estimated from 10:00 to 14:00 AST for dive depths ≥50 m, we formulated two generalized linear mixed-effects models to test the association of predicted grey seal behavioural states with oceanographic conditions and phytoplankton biomass: the first representing conditions of the upper-water column likely to influence primary productivity, and a second model including environmental conditions encountered by grey seals at the bottom of dives, when seals were more likely to be foraging. RESULTS: Predicted grey seal behavioural states were associated with fine-scale chlorophyll-a concentrations and other environmental conditions they encountered across the continental shelf. In the Water Column Model, season had no influence on the probability of observing apparent foraging, but chlorophyll-a, upper-water column temperature, and sex did, with females having a greater probability of foraging than males. In the Bottom Conditions Model, again season had no influence on the probability of apparent foraging, but females were over twice as likely as males to be foraging. CONCLUSIONS: The results of this study highlight the value of in situ measurements of oceanographic properties that can be collected at high temporal resolution by animal-borne data loggers. These data provide insight into how inferred behavioural decisions made by large marine predators, such as the grey seal, may be influenced by fine-scale oceanographic conditions.

2.
Mov Ecol ; 8: 11, 2020.
Article in English | MEDLINE | ID: mdl-32082578

ABSTRACT

BACKGROUND: The distribution of prey in the ocean is spatially and temporally patchy. How predators respond to this prey patchiness may have consequences on their foraging success, and thus physical condition. The recent ability to record fine-scale movements of marine animals combined with novel home-range analyses that incorporate the dimension of time should permit a better understanding of how individuals utilise different regions of space and the consequences on their foraging success. METHODS: Over a six-year study, we used T-LoCoH (Time-Local Convex Hull) home-range software to model archival GPS (Global Positioning System) data from 81 grey seals to investigate the fine-scale spatio-temporal use of space and the distribution of apparent foraging effort. Regions of home-ranges were classified according to the frequency of return visits (site fidelity) and duration of visits (intensity of use). Generalized linear mixed -effects models were used to test hypotheses on seasonal changes in foraging distribution and behaviour and the role of space-use and state on determining foraging success. RESULTS: Male grey seals had larger home-ranges and core areas than females, and both sexes showed a contraction in home-range and core area in fall leading up to the breeding season compared with summer. Heavier individuals had smaller core areas than lighter ones, suggesting access to higher quality habitat might be limited to those individuals with greater foraging experience and competitive ability. The size of the home-range or core area was not an important predictor of the rate of mass gain. A fine-scale spatio-temporal analysis of habitat use within the home-range provided evidence of intra-annual site fidelity at presumed foraging locations, suggesting predictably in prey distribution. Neither sex nor season were useful predictors for classifying behaviour. Rather, individual identity explained much of the variation in fine-scale behaviour. CONCLUSIONS: Understanding how upper-trophic level marine predators use space provides opportunities to explore the consequences of variation in foraging tactics and their success on fitness. Having knowledge of the drivers that shape this intraspecific variation can contribute toward predicting how these predators may respond to both natural and man-made environmental forcing.

3.
Mol Ecol ; 13(11): 3543-8, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15488010

ABSTRACT

Studies using molecular markers have shown that some grey seal males may be gaining success through exhibiting alternative mating tactics. We estimated the probability of fertilization success of grey seal males exhibiting the primary tactic of female defence and one alternative tactic of mating with departing females on Sable Island, Nova Scotia, Canada, during the breeding seasons of 1997-2002. Although the fertilization rate of the primary tactic (27-43%) was greater than that of the alternative tactic (10-12%), these low rates indicate the potential fitness value of alternative mating tactics in this size-dimorphic pinniped species.


Subject(s)
Fertilization , Seals, Earless/physiology , Sexual Behavior, Animal , Animals , Female , Male , Models, Genetic , Nova Scotia , Seals, Earless/genetics , Sequence Analysis, DNA , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL