Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 14: 1181039, 2023.
Article in English | MEDLINE | ID: mdl-37389288

ABSTRACT

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

3.
Plant Physiol ; 193(1): 595-610, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37300538

ABSTRACT

Arabidopsis (Arabidopsis thaliana) seeds expressing the feedback-insensitive form of cystathionine γ-synthase (AtD-CGS), the key gene of methionine (Met) synthesis, under the control of a seed-specific phaseolin promoter (SSE plants) show a significant increase in Met content. This elevation is accompanied by increased levels of other amino acids (AAs), sugars, total protein, and starch, which are important from a nutritional aspect. Here, we investigated the mechanism behind this phenomenon. Gas chromatography-mass spectrometry (GC-MS) analysis of SSE leaves, siliques, and seeds collected at 3 different developmental stages showed high levels of Met, AAs, and sugars compared to the control plants. A feeding experiment with isotope-labeled AAs showed an increased flux of AAs from nonseed tissues toward the developing seeds of SSE. Transcriptome analysis of leaves and seeds displayed changes in the status of methylation-related genes in SSE plants that were further validated by methylation-sensitive enzymes and colorimetric assay. These results suggest that SSE leaves have higher DNA methylation rates than control plants. This occurrence apparently led to accelerated senescence, together with enhanced monomer synthesis, which further resulted in increased transport of monomers from the leaves toward the seeds. The developing seeds of SSE plants, however, show reduced Met levels and methylation rates. The results provide insights into the role of Met in DNA methylation and gene expression and how Met affects the metabolic profile of the plant.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Methionine/metabolism , DNA Methylation/genetics , Gene Expression Regulation, Plant , Seeds/metabolism , Amino Acids/metabolism , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/metabolism
4.
Curr Opin Plant Biol ; 70: 102297, 2022 12.
Article in English | MEDLINE | ID: mdl-36108411

ABSTRACT

Maintaining global food security is a major challenge that requires novel strategies for crop improvement. Epigenetic regulation of plant responses to adverse environmental conditions provides a tunable mechanism to optimize plant growth, adaptation and ultimately yield. Epibreeding employs agricultural practices that rely on key epigenetic features as a means of engineering favorable phenotypic traits in target crops. This review summarizes recent findings on the role of epigenetic marks such as DNA methylation and histone modifications, in controlling phenotypic variation in crop species in response to environmental factors. The potential use of natural and induced epigenetic features as platforms for crop improvement via epibreeding, is discussed.


Subject(s)
DNA Methylation , Epigenesis, Genetic , DNA Methylation/genetics , Crops, Agricultural/genetics , Histone Code , Phenotype
5.
Nat Plants ; 8(10): 1153-1159, 2022 10.
Article in English | MEDLINE | ID: mdl-36109610

ABSTRACT

Recent studies have demonstrated that not only genes but also entire chromosomes can be engineered using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPER-associated protein 9 (Cas9)1-5. A major objective of applying chromosome restructuring in plant breeding is the manipulation of genetic exchange6. Here we show that meiotic recombination can be suppressed in nearly the entire chromosome using chromosome restructuring. We were able to induce a heritable inversion of a >17 Mb-long chromosome fragment that contained the centromere and covered most of chromosome 2 of the Arabidopsis ecotype Col-0. Only the 2 and 0.5 Mb-long telomeric ends remained in their original orientation. In single-nucleotide polymorphism marker analysis of the offspring of crosses with the ecotype Ler-1, we detected a massive reduction of crossovers within the inverted chromosome region, coupled with a shift of crossovers to the telomeric ends. The few genetic exchanges detected within the inversion all originated from double crossovers. This not only indicates that heritable genetic exchange can occur by interstitial chromosome pairing, but also that it is restricted to the production of viable progeny.


Subject(s)
Arabidopsis , Chromosomes, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomes, Plant/genetics , CRISPR-Cas Systems , Plant Breeding
6.
Front Genet ; 13: 818727, 2022.
Article in English | MEDLINE | ID: mdl-35251130

ABSTRACT

Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the "epigenetic alphabet" that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.

7.
Genes (Basel) ; 12(9)2021 08 28.
Article in English | MEDLINE | ID: mdl-34573319

ABSTRACT

Heat stress is a major environmental factor limiting crop productivity, thus presenting a food security challenge. Various approaches are taken in an effort to develop crop species with enhanced tolerance to heat stress conditions. Since epigenetic mechanisms were shown to play a regulatory role in mediating plants' responses to their environment, we investigated the role of DNA methylation in response to heat stress in tomato (Solanum lycopersicum), an important vegetable crop. To meet this aim, we tested a DNA methylation-deficient tomato mutant, Slddm1b. In this short communication paper, we report phenotypic and transcriptomic preliminary findings, implying that the tomato ddm1b mutant is significantly less sensitive to heat stress compared with the background tomato line, M82. Under conditions of heat stress, this mutant line presented higher fruit set and seed set rates, as well as a higher survival rate at the seedling stage. On the transcriptional level, we observed differences in the expression of heat stress-related genes, suggesting an altered response of the ddm1b mutant to this stress. Following these preliminary results, further research would shed light on the specific genes that may contribute to the observed thermotolerance of ddm1b and their possibly altered DNA methylation status.


Subject(s)
DNA-Binding Proteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Thermotolerance/genetics , DNA Methylation , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Hot Temperature/adverse effects , Plant Proteins/metabolism , Plants, Genetically Modified , Seedlings , Transcription, Genetic
8.
AoB Plants ; 13(4): plab046, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34394907

ABSTRACT

Climate change is causing temperature increment in crop production areas worldwide, generating conditions of heat stress that negatively affect crop productivity. Tomato (Solanum lycopersicum), a major vegetable crop, is highly susceptible to conditions of heat stress. When tomato plants are exposed to ambient day/night temperatures that exceed 32 °C/20 °C, respectively, during the reproductive phase, fruit set and fruit weight are reduced, leading to a significant decrease in yield. Processing tomato cultivars are cultivated in open fields, where environmental conditions are not controlled; therefore, plants are exposed to multiple abiotic stresses, including heat stress. Nonetheless, information on stress response in processing tomatoes is very limited. Understanding the physiological response of modern processing tomato cultivars to heat stress may facilitate the development of thermotolerant cultivars. Here, we compared two tomato processing cultivars, H4107 and H9780, that we found to be constantly differing in yield performance. Using field and temperature-controlled greenhouse experiments, we show that the observed difference in yield is attributed to the occurrence of heat stress conditions. In addition, fruit set and seed production were significantly higher in the thermotolerant cultivar H4107, compared with H9780. Despite the general acceptance of pollen viability as a measure of thermotolerance, there was no difference in the percentage of viable pollen between H4107 and H9780 under either of the conditions tested. In addition to observations of similar pollen germination and bud abscission rates, our results suggest that processing tomato cultivars may present a particular case, in which pollen performance is not determining reproductive thermotolerance. Our results also demonstrate the value of combining controlled and uncontrolled experimental settings, in order to validate and identify heat stress-related responses, thus facilitating the development of thermotolerant processing tomato cultivars.

9.
Biology (Basel) ; 10(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439998

ABSTRACT

Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.

10.
Front Plant Sci ; 12: 672368, 2021.
Article in English | MEDLINE | ID: mdl-34093629

ABSTRACT

Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants' ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.

11.
Plant Cell ; 31(11): 2559-2572, 2019 11.
Article in English | MEDLINE | ID: mdl-31467248

ABSTRACT

Phytohormones regulate many aspects of plant life by activating transcription factors (TFs) that bind sequence-specific response elements (REs) in regulatory regions of target genes. Despite their short length, REs are degenerate, with a core of just 3 to 4 bp. This degeneracy is paradoxical, as it reduces specificity and REs are extremely common in the genome. To study whether RE degeneracy might serve a biological function, we developed an algorithm for the detection of regulatory sequence conservation and applied it to phytohormone REs in 45 angiosperms. Surprisingly, we found that specific RE variants are highly conserved in core hormone response genes. Experimental evidence showed that specific variants act to regulate the magnitude and spatial profile of hormonal response in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Our results suggest that hormone-regulated TFs bind a spectrum of REs, each coding for a distinct transcriptional response profile. Our approach has implications for precise genome editing and for rational promoter design.


Subject(s)
Arabidopsis/genetics , Plant Growth Regulators/metabolism , Response Elements/genetics , Solanum lycopersicum/genetics , Abscisic Acid/metabolism , Algorithms , Arabidopsis/metabolism , Base Sequence , Conserved Sequence/genetics , Cytokinins/metabolism , DNA, Plant/analysis , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genome, Plant , Solanum lycopersicum/metabolism , Magnoliopsida/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Regulatory Sequences, Nucleic Acid/physiology , Sequence Analysis, DNA
12.
EMBO J ; 36(5): 617-628, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28069706

ABSTRACT

Transgenerationally heritable epialleles are defined by the stable propagation of alternative transcriptional states through mitotic and meiotic cell cycles. Given that the propagation of DNA methylation at CpG sites, mediated in Arabidopsis by MET1, plays a central role in epigenetic inheritance, we examined genomewide DNA methylation in partial and complete loss-of-function met1 mutants. We interpreted the data in relation to transgenerational epiallelic stability, which allowed us to classify chromosomal targets of epigenetic regulation into (i) single copy and methylated exclusively at CpGs, readily forming epialleles, and (ii) transposon-derived, methylated at all cytosines, which may or may not form epialleles. We provide evidence that DNA sequence features such as density of CpGs and genomic repetitiveness of the loci predispose their susceptibility to epiallelic switching. The importance and predictive power of these genetic features were confirmed by analyses of common epialleles in natural Arabidopsis accessions, epigenetic recombinant inbred lines (epiRILs) and also verified in rice.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Plant , Arabidopsis Proteins/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA, Plant/chemistry , DNA, Plant/metabolism , Mutation
13.
PLoS One ; 8(12): e85383, 2013.
Article in English | MEDLINE | ID: mdl-24386472

ABSTRACT

Gene Targeting (GT) is the integration of an introduced vector into a specific chromosomal site, via homologous recombination. It is considered an effective tool for precise genome editing, with far-reaching implications in biological research and biotechnology, and is widely used in mice, with the potential of becoming routine in many species. Nevertheless, the epigenetic status of the targeted allele remains largely unexplored. Using GT-modified lines of the model plant Arabidopsis thaliana, we show that the DNA methylation profile of the targeted locus is changed following GT. This effect is non-directional as methylation can be either completely lost, maintained with minor alterations or show instability in the generations subsequent to GT. As DNA methylation is known to be involved in several cellular processes, GT-related alterations may result in unexpected or even unnoticed perturbations. Our analysis shows that GT may be used as a new tool for generating epialleles, for example, to study the role of gene body methylation. In addition, the analysis of DNA methylation at the targeted locus may be utilized to investigate the mechanism of GT, many aspects of which are still unknown.


Subject(s)
Arabidopsis/genetics , DNA Methylation/genetics , DNA, Plant/genetics , Epigenesis, Genetic , Gene Targeting , Genetic Loci , Animals , Mice , Plants, Genetically Modified
14.
Proc Natl Acad Sci U S A ; 109(15): 5880-5, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22451936

ABSTRACT

During sexual reproduction, one-half of the genetic material is deposited in gametes, and a complete set of chromosomes is restored upon fertilization. Reduction of the genetic information before gametogenesis occurs in meiosis, when cross-overs (COs) between homologous chromosomes secure an exchange of their genetic information. COs are not evenly distributed along chromosomes and are suppressed in chromosomal regions encompassing compact, hypermethylated centromeric and pericentromeric DNA. Therefore, it was postulated that DNA hypermethylation is inhibitory to COs. Here, when analyzing meiotic recombination in mutant plants with hypomethylated DNA, we observed unexpected and counterintuitive effects of DNA methylation losses on CO distribution. Recombination was further promoted in the hypomethylated chromosome arms while it was inhibited in heterochromatic regions encompassing pericentromeric DNA. Importantly, the total number of COs was not affected, implying that loss of DNA methylation led to a global redistribution of COs along chromosomes. To determine by which mechanisms altered levels of DNA methylation influence recombination--whether directly in cis or indirectly in trans by changing expression of genes encoding recombination components--we analyzed CO distribution in wild-type lines with randomly scattered and well-mapped hypomethylated chromosomal segments. The results of these experiments, supported by expression profiling data, suggest that DNA methylation affects meiotic recombination in cis. Because DNA methylation exhibits significant variation even within a single species, our results imply that it may influence the evolution of plant genomes through the control of meiotic recombination.


Subject(s)
Arabidopsis/genetics , DNA Methylation/genetics , Recombination, Genetic , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Chromosomes, Plant/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Euchromatin/metabolism , Heterochromatin/metabolism , Inbreeding , Meiosis/genetics , Mutation/genetics
15.
Methods Mol Biol ; 701: 51-65, 2011.
Article in English | MEDLINE | ID: mdl-21181524

ABSTRACT

Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.


Subject(s)
DNA, Plant/genetics , Plants/genetics , Recombination, Genetic , Chromatin , Gene Targeting , Meiosis , Methylation , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...