Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38931892

ABSTRACT

Lipid nanoparticles (LNPs) tailored for mRNA delivery were optimized to serve as a platform for treating metabolic diseases. Four distinct lipid mixes (LMs) were formulated by modifying various components: LM1 (ALC-0315/DSPC/Cholesterol/ALC-0159), LM2 (ALC-0315/DOPE/Cholesterol/ALC-0159), LM3 (ALC-0315/DSPC/Cholesterol/DMG-PEG2k), and LM4 (DLin-MC3-DMA/DSPC/Cholesterol/ALC-0159). LNPs exhibited stability and homogeneity with a mean size of 75 to 90 nm, confirmed by cryo-TEM and SAXS studies. High mRNA encapsulation (95-100%) was achieved. LNPs effectively delivered EGFP-encoding mRNA to HepG2 and DC2.4 cell lines. LNPs induced cytokine secretion from human peripheral blood mononuclear cells (PBMCs), revealing that LM1, LM2, and LM4 induced 1.5- to 4-fold increases in IL-8, TNF-α, and MCP-1 levels, while LM3 showed minimal changes. Reporter mRNA expression was observed in LNP-treated PBMCs. Hemotoxicity studies confirmed formulation biocompatibility with values below 2%. In vivo biodistribution in mice post intramuscular injection showed significant mRNA expression, mainly in the liver. The modification of LNP components influenced reactogenicity, inflammatory response, and mRNA expression, offering a promising platform for selecting less reactogenic carriers suitable for repetitive dosing in metabolic disease treatment.

2.
Adv Mater ; : e2401137, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742799

ABSTRACT

In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.

3.
J Am Chem Soc ; 146(17): 11991-11999, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639465

ABSTRACT

The complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters. Tracked by phasor-fluorescence lifetime imaging (phasor-FLIM) in epithelial cells (L929, A549, MDA-MB 231) and correlative light-electron microscopy and tomography (CLEM), spatiotemporal splicing of the assembly events shows time-correlated metabolic dysfunction. The biological impact begins with assembly-induced endosomal disruption that reduces glucose transport into the cells, which, in turn, stymies mitochondrial respiration.


Subject(s)
Optical Imaging , Humans , Endosomes/metabolism , Nanofibers/chemistry , Cell Line , Animals
4.
J Am Chem Soc ; 146(11): 7222-7232, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38469853

ABSTRACT

Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.


Subject(s)
Melanins , Nanodiamonds , Ultraviolet Rays , Free Radicals
5.
J Mech Behav Biomed Mater ; 152: 106368, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340476

ABSTRACT

PURPOSE: To describe and analyse the particularities of the material and the optical quality of the first intraocular lens (IOL) (Eyedeal® lens) made of crosslinked polyisobutylene (xPIB). METHODS: We assessed the material quality using an accelerated ageing process (to provoke glistenings) and compared values with a control, AcrySof® lens. Using the sessile drop method, the contact angle of the new IOL was measured. Images of the lens surface were recorded by scanning electron microscopy (SEM). Optical quality was assessed by measuring the labeled power and modulation transfer function (MTF) using standard metrology equipment (OptiSpheric IOL PRO2). RESULTS: The Eyedeal® lens had an average glistening density result of 7.46 ± 3.78 MV/mm2 compared to the control AcrySof® whose glistenings number was 142.42 ± 72.47 MV/mm2. The contact angle was 97.2° whereas the angle of AcrySof material is between 73.3 ± 2.4° and 84.4 ± 0.1°. Using SEM, Eyedeal® lenses were examined and all appeared to be comparable to modern IOLs made of acrylic materials. The power and MTF values were normal and conformed to ISO standards. CONCLUSIONS: In the laboratory, the new Eyedeal® lens showed equivalence to current hydrophobic- or hydrophilic-acrylic lens models. It showed superiority in its glistening density result compared to the control lens.


Subject(s)
Lenses, Intraocular , Polymers , Polyenes , Laboratories , Microscopy, Electron, Scanning
6.
Ophthalmol Ther ; 13(3): 791-800, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244181

ABSTRACT

INTRODUCTION: The aim of this study was to analyze posterior surface opacification in explanted silicone intraocular lenses (IOLs) with clinicopathologic correlation to asteroid hyalosis. METHODS: In a laboratory setup, 12 explanted silicone IOLs underwent laboratory analyses, including light microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy for elemental composition (EDX). Relevant clinical data were obtained for each case, including gender, age at IOL implantation, dates of implantation and explantation, as well as history of neodymium-dopped yttrium aluminum garnet (Nd:YAG) laser treatments or other opacification removal attempts. High-resolution optical coherence tomography (OCT) images were obtained in vitro with an anterior segment OCT device (Anterion, Heidelberg Engineering, Heidelberg, Germany). RESULTS: Calcification located at the posterior optic surface of each lens was identified through SEM and EDX analyses, revealing deposits composed of hydroxyapatite. In all cases, IOL polishing using Nd:YAG laser had been attempted prior to IOL exchange. The clinical functional data showed that this type of IOL opacity led to increase in straylight and subjective symptoms of glare. CONCLUSIONS: Silicone IOLs can develop posterior surface calcification in eyes with asteroid hyalosis. There are mechanical techniques of cleaning the IOL surface but in many cases, IOL explantation is the only sustainable way to reduce the patients' straylight levels and glare symptoms. Due to the risk of posterior surface calcification, silicone IOL implantation should be avoided in eyes with asteroid hyalosis.

7.
PLoS Biol ; 21(12): e3002402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048369

ABSTRACT

Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.


Subject(s)
Retinal Degeneration , Retinal Pigment Epithelium , Animals , Humans , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cilia/genetics , Cilia/metabolism , Disease Models, Animal , Epithelium , Mice, Knockout , Retina , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Pigment Epithelium/metabolism
8.
Am J Ophthalmol ; 262: 192-198, 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38016528

ABSTRACT

PURPOSE: A complication of using silicone oil as an intraocular endotamponade is its adhesion to intraocular lenses (IOLs). Forward light scattering is a measure to quantify the optical disturbance caused by adherent oil droplets. We tested the straylight caused by silicone oil adhesion to different IOLs and examined whether an approved cleaning solution, F4H5, reverses the induced straylight. DESIGN: An experimental study. METHODS: Two hydrophobic acrylic IOL models and 1 hydrophilic model with a hydrophobic surface (n = 8 per model: 24 lenses) had straylight measured before contact with silicone oils, providing a baseline for subsequent testing: 12 lenses with lighter-than-water silicone oil (Siluron 2000) and 12 with heavier-than-water oil (Densiron 68). The final measurement was performed after cleansing with F4H5 when we used scanning electron and light microscopy to detect surface changes. RESULTS: Straylight was majorly increased in IOLs with adherent silicone oil (baseline vs adherent oil median 3.1 [2.1, 3.9] and 39.7 [22.7, 87.8] deg2/sr, respectively; P < .001). No difference was seen between heavier- and lighter-than-water silicone oils. Between IOL types, induced straylight varied significantly, with 1 hydrophobic model reaching the highest average straylight. F4H5 significantly reduced straylight values in all IOL types (median 9.4 [5.4, 13.8] deg2/sr). The microscopy revealed surface changes on the IOLs even after cleaning. CONCLUSIONS: Silicone oil adhesion to IOLs can induce amounts of straylight known to cause severe optical disturbance. F4H5 cleansing solution reversed straylight values to only slightly increased values. We found no difference in straylight formation between the lighter- and heavier-than-water silicone oils.

9.
Acta Biomater ; 172: 355-368, 2023 12.
Article in English | MEDLINE | ID: mdl-37839632

ABSTRACT

The intracellular protein corona has not been fully investigated in the field of nanotechnology-biology (nano-bio) interactions. To effectively understand intracellular protein corona formation and dynamics, we established a workflow to isolate the intracellular protein corona at different uptake times of two nanoparticles - magnetic hydroxyethyl starch nanoparticles (HES-NPs) and magnetic human serum albumin nanocapsules (HSA-NCs). We performed label-free quantitative LC-MS proteomics to analyze the composition of the intracellular protein corona and correlated our findings with results from conventional methods for intracellular trafficking of nanocarriers, such as flow cytometry, transmission electron microscopy (TEM), and confocal microscopy (cLSM). We determined the evolution of the intracellular protein corona. At different time stages the protein corona of the HES-NPs with a slower uptake changed, but there were fewer changes in that of the HSA-NCs with a more rapid uptake. We identified proteins that are involved in macropinocytosis (RAC1, ASAP2) as well as caveolin. This was confirmed by blocking experiments and by TEM studies. The investigated nanocarrier predominantly trafficked from early endosomes as determined by RAB5 identification in proteomics and in cLSM to late endosomes/lysosomes (RAB7, LAMP1, cathepsin K and HSP 90-beta) We further demonstrated differences between nanoparticles with slower and faster uptake kinetics and determined the associated proteome at different time points. Analysis of the intracellular protein corona provides us with effective data to examine the intracellular trafficking of nanocarriers used in efficient drug delivery and intracellular applications. STATEMENT OF SIGNIFICANCE: Many research papers focus on the protein corona on nanoparticles formed in biological fluids, but there are hardly any articles dealing with proteins that come in contact with nanoparticles inside cells. The "intracellular protein corona" studied here is a far more complex and highly demanding field. Most nanocarriers are designed to be taken up into cells. Given this, we chose two different nanocarriers to reveal changes in the proteins in dendritic cells during contact at specific times. Further studies will allow us to examine molecular target proteins using these methods. Our research is a significant addition towards the goal of understanding and thus improving the efficacy of drug nanocarriers.


Subject(s)
Nanocapsules , Nanoparticles , Protein Corona , Humans , Proteomics , Nanoparticles/metabolism , Proteome , Serum Albumin, Human , GTPase-Activating Proteins
12.
BMC Cancer ; 23(1): 762, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587449

ABSTRACT

BACKGROUND: Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS: Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS: Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS: This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Glioblastoma/drug therapy , Temozolomide/pharmacology , Neoplasm Recurrence, Local , Cell Death , Neoplastic Processes , Sphingolipids
13.
Small ; 19(46): e2303384, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37452438

ABSTRACT

A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.


Subject(s)
Escherichia coli , Polymers , Polymers/chemistry , Escherichia coli/metabolism , Cell Membrane , Bacteria
14.
Ophthalmologie ; 120(10): 1022-1028, 2023 Oct.
Article in German | MEDLINE | ID: mdl-37171476

ABSTRACT

BACKGROUND: Opacification through calcification of hydrophilic acrylic intraocular lenses is a serious complication of cataract surgery, which usually results in explantation of the lens. In the process of calcification, the intraocular lens material plays a crucial role: calcification only occurs in hydrophilic acrylic lenses. Hydrophobic acrylic lenses show no crystal formation within the polymer. Hydrophilic acrylic lenses from some manufacturers have hydrophobic surface properties. The question arises as to what influence these surface properties have on the risk of calcification. OBJECTIVE: The present study investigated whether the hydrophobic surface properties of hydrophilic acrylic lenses can prevent calcification. MATERIAL AND METHODS: Using an electrophoretic in vitro model of calcification, two hydrophilic lenses with hydrophobic surface properties were compared to two hydrophilic lenses and a hydrophobic negative control to determine the risk of calcification. The lenses were then analyzed by optical microscopy, Alizarin Red and Von Kossa staining, scanning electron microscopy (SEM) and energy dispersive X­ray spectroscopy (EDX). RESULTS: All four hydrophilic lens models showed calcification within the polymer. No difference was found between the hydrophilic lenses and the hydrophilic lenses with hydrophobic surface properties in terms of crystal formation. The hydrophobic negative control showed no calcification. CONCLUSION: The investigation conducted in this study under standardized conditions could show that hydrophobic surface properties of hydrophilic acrylic lenses do not protect against calcium phosphate crystal formation within the polymer. There also is a risk of calcification in these lens models.

15.
Adv Sci (Weinh) ; 10(18): e2207472, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37096844

ABSTRACT

A new straight forward approach to create nanoporous polymer membranes with well defined average pore diameters is presented. The method is based on fast mechanical deformation of highly entangled polymer films at high temperatures and a subsequent quench far below the glass transition temperature Tg . The process is first designed generally by simulation and then verified for the example of polystyrene films. The methodology does not need any chemical processing, supporting substrate, or self assembly process and is solely based on polymer inherent entanglement effects. Pore diameters are of the order of ten polymer reptation tube diameters. The resulting membranes are stable over months at ambient conditions and display remarkable elastic properties.


Subject(s)
Nanopores , Polymers , Polymers/chemistry , Polystyrenes/chemistry , Temperature , Hot Temperature
16.
Small ; 19(25): e2206454, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929281

ABSTRACT

Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.

19.
Nat Commun ; 14(1): 295, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653346

ABSTRACT

The formation of the protein corona is a well-known effect when nanoparticles (NP) are exposed to biological environments. The protein corona is the most important factor, which determines the rate and route of endocytosis, and decisively impacts cellular processes and even the release of the active pharmaceutical ingredient from the nanoparticles. While many studies concentrate on the effect of the protein corona formation extracellularly or the uptake consequences, little is known about the fate of the protein corona inside of cells. Here, we reconstruct for the first time the separation of the protein corona from the NPs by the cell and their further fate. Ultimately, the NPs and protein corona are separated from each other and end up in morphologically different cellular compartments. The cell directs the NPs towards recycling endosomes, whereas the protein corona gathers in multivesicular bodies. From this, we conclude that the NPs are prepared for subsequent exocytosis, while the protein corona remains in the cell and is finally metabolized there.


Subject(s)
Nanoparticles , Protein Corona , Protein Corona/metabolism , Nanoparticles/metabolism , Endocytosis , Biological Transport , Endosomes/metabolism
20.
Mater Today Bio ; 16: 100404, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36065353

ABSTRACT

Inorganic polyphosphates (polyP) are of increasing medical interest due to their unprecedented ability to exhibit both morphogenetic and ATP-delivering properties. However, these polymers are only physiologically active in the coacervate state, but not as amorphous nanoparticles (NP), the storage form of the polymer. Little is known about the mechanism of formation and interconversion of these two distinct polyP phases in the presence of metal ions. Based on in silico simulation studies, showing a differential clustering of polyP and calcium ions, the pH-dependent NP and coacervate formation of polyP was examined experimentally. Turbidimetric studies showed that Ca-polyP coacervate formation at pH 7 is a slow process compared to NP formation at pH 10. In FTIR spectra, the asymmetric stretching vibration signal of the internal (PO2)- units, which is present in the Ca-polyP coacervate formed at pH 7, disappears in the NP formed at pH 10 using the conventional method (dropping of a CaCl2 solution into a Na-polyP solution). Surprisingly, when reversing the procedure, adding Na-polyP to CaCl2, a coacervate is obtained at both pH 7 and pH 10, as confirmed by SEM and FTIR analyses. The (PO2)- signal also disappears when Ca-polyP-NP are exposed to peptides, leading to the transformation of the NP into the coacervate phase. From these results, a mechanistic model of pH-dependent coacervate and NP formation is proposed that considers not only electrostatic ion-ion but also ion-dipole interactions. Functional studies revealed a delayed polyP release kinetics for Ca-polyP-NP embedded in a hydrogel due to NP/coacervate conversion. Human A549 epithelial cells grown on the coacervate show increased proliferation and ATP production compared to cells cultured on particulate polyP. Ca-polyP NP taken up by endocytosis undergo intracellular coacervate transformation. Understanding the differential expression of the two polyP phases is of functional importance for the potential therapeutic application of this physiological, regeneratively active polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...