Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Genet ; 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790351

ABSTRACT

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

2.
J Inherit Metab Dis ; 44(5): 1263-1271, 2021 09.
Article in English | MEDLINE | ID: mdl-34043239

ABSTRACT

Phosphoglucomutase 1 (PGM1) catalyzes the interconversion of glucose-6-phosphate to glucose-1-phosphate and is a key enzyme of glycolysis, glycogenesis, and glycogenolysis. PGM1 deficiency (OMIM: 614921) was initially defined as a glycogen storage disorder (type XIV), and later re-classified as a PGM1-congenital disorder of glycosylation (PGM1-CDG). Serum transferrin (Tf) glycan isoform analysis by liquid chromatography-mass spectrometry (LC-MS) is used as a primary diagnostic screen tool, and reveals a very unique CDG profile described as a mixture of CDG-type I and CDG-type II patterns. Oral d-galactose supplementation shows significant clinical and metabolic improvements, which are indicated by the Tf glycan isoform normalization over time in patients with PGM1-CDG. Thus, there is a need for biomarkers to guide d-galactose dosage in patients in order to maintain effective and safe drug levels. Here, we present a simplified algorithm called PGM1-CDG Treatment Monitoring Index (PGM1-TMI) for assessing the response of PGM1-CDG patients to d-galactose supplementation. For our single-center cohort of 16 PGM1-CDG patients, the Tf glycan profile analysis provided the biochemical diagnosis in all of them. In addition, the PGM1-TMI was reduced in PGM1-CDG patients under d-galactose supplementation as compared with their corresponding values before treatment, indicating that glycosylation proceeds towards normalization. PGM1-TMI allows tracking Tf glycan isoform normalization over time when the patients are on d-galactose supplementation.


Subject(s)
Galactose/therapeutic use , Glycogen Storage Disease/drug therapy , Adult , Biomarkers/metabolism , Child , Child, Preschool , Cohort Studies , Dose-Response Relationship, Drug , Drug Monitoring , Female , Galactose/administration & dosage , Galactose/adverse effects , Glycoproteins/metabolism , Humans , Infant , Male , Mass Spectrometry , Phosphoglucomutase/metabolism , Young Adult
3.
Brain ; 143(4): 1114-1126, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32293671

ABSTRACT

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Subject(s)
Apolipoprotein C-III/blood , Developmental Disabilities/genetics , N-Acetylgalactosaminyltransferases/genetics , Adolescent , Animals , Apolipoprotein C-III/genetics , Child , Child, Preschool , Female , Glycosylation , Humans , Loss of Function Mutation , Male , Mice , Pedigree , Rats , Young Adult , Polypeptide N-acetylgalactosaminyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...