Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(3): 1351-1369, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35100417

ABSTRACT

Tight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, the mechanisms that orchestrate the global and dramatic transcriptional changes leading to adipocyte differentiation remain to be fully unraveled. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq. We discovered that the sumoylation pathway has a dual function in differentiation; it supports the initial downregulation of pre-adipocyte-specific genes, while it promotes the establishment of the mature adipocyte transcriptional program. By characterizing endogenous sumoylome dynamics in differentiating adipocytes by mass spectrometry, we found that sumoylation of specific transcription factors like PPARγ/RXR and their co-factors are associated with the transcription of adipogenic genes. Finally, using RXR as a model, we found that sumoylation may regulate adipogenic transcription by supporting the chromatin occurrence of transcription factors. Our data demonstrate that the sumoylation pathway supports the rewiring of transcriptional networks required for formation of functional adipocytes. This study also provides the scientists in the field of cellular differentiation and development with an in-depth resource of the dynamics of the SUMO-chromatin landscape, SUMO-regulated transcription and endogenous sumoylation sites during adipocyte differentiation.


Subject(s)
Adipogenesis , Sumoylation , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Transcription Factors/metabolism
2.
Nucleic Acids Res ; 40(18): 9044-59, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22810208

ABSTRACT

The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.


Subject(s)
DNA Repair , Flap Endonucleases/metabolism , Animals , Bacterial Proteins/genetics , Brain/metabolism , Cells, Cultured , DNA Damage , Flap Endonucleases/analysis , Flap Endonucleases/genetics , Gene Knock-In Techniques , Kinetics , Luminescent Proteins/genetics , Mice , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Proliferating Cell Nuclear Antigen/analysis , S Phase
3.
Brain Res ; 1041(1): 66-71, 2005 Apr 11.
Article in English | MEDLINE | ID: mdl-15804501

ABSTRACT

Neuronal events leading to development of long-term potentiation (LTP) in the nociceptive pathways may be a cellular mechanism underlying central hyperalgesia. Here, we examine whether induction of LTP in nociceptive dorsal horn neurons at depths of 80-500 microm from the cord surface can be affected by spinal application of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor AIP. Extracellular recordings from single neurons in intact urethane anesthetized Sprague-Dawley rats were performed, and the neuronal A-fiber and C-fiber responses after sciatic nerve test pulses were defined according to latencies. A clear LTP of the nociceptive transmission following sciatic nerve high-frequency stimulation (HFS) was observed in single neurons in laminae I-IV of the dorsal horn. The increase in the C-fiber response after HFS was blocked in the presence of 2.0 mM AIP (P < 0.05 HFS group versus AIP + HFS group 2 h after conditioning). However, the C-fiber response was not affected by 2.0 mM AIP alone or by vehicle. Thus, our data show that the neuronal process leading to the induction of LTP in the dorsal horn induced by HFS is clearly inhibited by the specific CaMKII inhibitor AIP. It is concluded that CaMKII may be important for the induction of LTP in single nociceptive dorsal horn neurons.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Long-Term Potentiation/drug effects , Nociceptors/drug effects , Peptides/pharmacology , Posterior Horn Cells/drug effects , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Electric Stimulation , Female , Long-Term Potentiation/physiology , Neural Pathways/cytology , Neural Pathways/drug effects , Neural Pathways/enzymology , Nociceptors/enzymology , Posterior Horn Cells/enzymology , Rats , Rats, Sprague-Dawley , Sciatic Nerve/cytology , Sciatic Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL