Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 27(9): 110710, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39262792

ABSTRACT

Mitochondria play important roles in cell fate, calcium signaling, mitophagy, and the signaling through reactive oxygen species (ROS). Recently, mitochondria are considered as a signaling organelle in the cell and communicate with other organelles to constitute the mitochondrial information processing system (MIPS) that transduce input-to-output biological information. The success in immunotherapy, a concept of systemic therapy, has been proved to be dependent on paracrine interactions within the tumor microenvironment (TME) and distant organs including microbiota and immune components. We will adopt a broader view from the concept of TME to tumor micro- and macroenvironment (TM 2 E) or tumor-organ ecosystem (TOE). In this review, we will discuss the role of mitochondrial signaling by mitochondrial ROS, calcium flux, metabolites, mtDNA, vesicle transportation, and mitochondria-derived peptide in the TME and TOE, in particular immune regulation and effective cancer immunotherapy.

2.
Cancer Immunol Immunother ; 72(2): 351-369, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35895109

ABSTRACT

BACKGROUND: Immunotherapy is an emerging cancer therapy with potential great success; however, immune checkpoint inhibitor (e.g., anti-PD-1) has response rates of only 10-30% in solid tumor because of the immunosuppressive tumor microenvironment (TME). This affliction can be solved by vascular normalization and TME reprogramming. METHODS: By using the single-cell RNA sequencing (scRNAseq) approach, we tried to find out the reprogramming mechanism that the Fc-VEGF chimeric antibody drug (Fc-VFD) enhances immune cell infiltration in the TME. RESULTS: In this work, we showed that Fc-VEGF121-VEGF165 (Fc-VEGF chimeric antibody drug, Fc-VFD) arrests excess angiogenesis and tumor growth through vascular normalization using in vitro and in vivo studies. The results confirmed that the treatment of Fc-VFD increases immune cell infiltration including cytotoxic T, NK, and M1-macrophages cells. Indeed, Fc-VFD inhibits Lon-induced M2 macrophages polarization that induces angiogenesis. Furthermore, Fc-VFD inhibits the secretion of VEGF-A, IL-6, TGF-ß, or IL-10 from endothelial, cancer cells, and M2 macrophage, which reprograms immunosuppressive TME. Importantly, Fc-VFD enhances the synergistic effect on the combination immunotherapy with anti-PD-L1 in vivo. CONCLUSIONS: In short, Fc-VFD fusion normalizes intratumor vasculature to reprogram the immunosuppressive TME and enhance cancer immunotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Tumor Microenvironment , Vascular Endothelial Growth Factor A , Immunotherapy , Antineoplastic Agents/pharmacology , Immunosuppressive Agents/pharmacology
3.
J Biomed Sci ; 29(1): 74, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36154922

ABSTRACT

The major concept of "oxidative stress" is an excess elevated level of reactive oxygen species (ROS) which are generated from vigorous metabolism and consumption of oxygen. The precise harmonization of oxidative stresses between mitochondria and other organelles in the cell is absolutely vital to cell survival. Under oxidative stress, ROS produced from mitochondria and are the major mediator for tumorigenesis in different aspects, such as proliferation, migration/invasion, angiogenesis, inflammation, and immunoescape to allow cancer cells to adapt to the rigorous environment. Accordingly, the dynamic balance of oxidative stresses not only orchestrate complex cell signaling events in cancer cells but also affect other components in the tumor microenvironment (TME). Immune cells, such as M2 macrophages, dendritic cells, and T cells are the major components of the immunosuppressive TME from the ROS-induced inflammation. Based on this notion, numerous strategies to mitigate oxidative stresses in tumors have been tested for cancer prevention or therapies; however, these manipulations are devised from different sources and mechanisms without established effectiveness. Herein, we integrate current progress regarding the impact of mitochondrial ROS in the TME, not only in cancer cells but also in immune cells, and discuss the combination of emerging ROS-modulating strategies with immunotherapies to achieve antitumor effects.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Inflammation , Neoplasms/metabolism , Oxidative Stress , Oxygen , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL