Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
F1000Res ; 13: 225, 2024.
Article in English | MEDLINE | ID: mdl-38919947

ABSTRACT

Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.


Subject(s)
Anticonvulsants , Venoms , Animals , Anticonvulsants/pharmacology , Humans , Venoms/therapeutic use , Venoms/pharmacology , Venoms/chemistry , Epilepsy/drug therapy
2.
Front Behav Neurosci ; 17: 1205175, 2023.
Article in English | MEDLINE | ID: mdl-37744951

ABSTRACT

Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.

3.
Mol Neurobiol ; 59(12): 7095-7118, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36083518

ABSTRACT

Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/prevention & control , Alzheimer Disease/metabolism , Environment , Hippocampus/metabolism , Cognition , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL