Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS Negl Trop Dis ; 18(4): e0012081, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630673

ABSTRACT

BACKGROUND: Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities. METHODS: Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings. RESULTS: Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact. CONCLUSIONS: As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.


Subject(s)
Aedes , Dengue Virus , Dengue , Adult , Animals , Humans , Dengue/epidemiology , Mosquito Vectors , Mosquito Control/methods , Cities
3.
Parasit Vectors ; 16(1): 355, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37814287

ABSTRACT

BACKGROUND: Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia. METHODS: Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables. RESULTS: Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak. CONCLUSION: The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Humans , Animals , Malaysia/epidemiology , Mosquito Vectors/parasitology , Malaria/epidemiology , Malaria/prevention & control , Malaria/parasitology , Macaca , Anopheles/parasitology , Spatial Analysis
4.
Genes (Basel) ; 14(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37510274

ABSTRACT

Although Malaysia is considered free of human malaria, there has been a growing number of Plasmodium knowlesi cases. This alarming trend highlighted the need for our understanding of this parasite and its associated vectors, especially considering the role of genetic diversity in the adaptation and evolution among vectors in endemic areas, which is currently a significant knowledge gap in their fundamental biology. Thus, this study aimed to investigate the genetic diversity of Anopheles balabacensis, Anopheles cracens, Anopheles introlatus, and Anopheles latens-the vectors for P. knowlesi malaria in Malaysia. Based on cytochrome c oxidase 1 (CO1) and internal transcribed spacer 2 (ITS2) markers, the genealogic networks of An. latens showed a separation of the haplotypes between Peninsular Malaysia and Malaysia Borneo, forming two distinct clusters. Additionally, the genetic distances between these clusters were high (2.3-5.2% for CO1) and (2.3-4.7% for ITS2), indicating the likely presence of two distinct species or cryptic species within An. latens. In contrast, no distinct clusters were observed in An. cracens, An. balabacensis, or An. introlatus, implying a lack of pronounced genetic differentiation among their populations. It is worth noting that there were varying levels of polymorphism observed across the different subpopulations, highlighting some levels of genetic variation within these mosquito species. Nevertheless, further analyses revealed that all four species have undergone demographic expansion, suggesting population growth and potential range expansion for these vectors in this region.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Humans , Animals , Malaria/epidemiology , Malaria/genetics , Malaria/parasitology , Anopheles/genetics , Anopheles/parasitology , Plasmodium knowlesi/genetics , Malaysia/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Demography
5.
PLoS Negl Trop Dis ; 17(6): e0011438, 2023 06.
Article in English | MEDLINE | ID: mdl-37384790

ABSTRACT

BACKGROUND: The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited. METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion. CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.


Subject(s)
Anopheles , Malaria , Parasites , Plasmodium cynomolgi , Plasmodium knowlesi , Plasmodium , Animals , Humans , Malaria/epidemiology , Anopheles/parasitology , Mosquito Vectors/parasitology , Plasmodium/genetics , Macaca , Plasmodium knowlesi/genetics
6.
Trop Med Int Health ; 28(6): 486-500, 2023 06.
Article in English | MEDLINE | ID: mdl-37042251

ABSTRACT

OBJECTIVES: Malaysia has achieved the status of zero indigenous human malaria cases. Nevertheless, imported human malaria has increasingly been reported in Sarawak, Malaysian Borneo. As zoonotic malaria caused by Plasmodium knowlesi remains a major public health problem in Sarawak, the threat of imported malaria must be addressed as it can cause human malaria reintroduction, sustain transmission, and lead to complications. The objectives of this study were to investigate the epidemiological characteristics of imported malaria cases reported in Sarawak and to underline the challenge posed by imported malaria towards malaria elimination efforts. METHODS: Imported malaria cases reported in Sarawak from 2011 to 2019 were collected from Sarawak State Health Department and analysed in this longitudinal retrospective study. RESULTS: A total of 2058 imported malaria cases were registered in all districts in Sarawak. Highest number of cases were reported in Kapit (n = 559; 27.16%), followed by Sibu (n = 424; 20.6%), and Miri (n = 166; 8.07%). Based on the demographic profile, most of the patients constituted of either male sex (98.49%), age group of 40-49 years (39.6%), Iban ethnic (57.92%), worked in logging industry (88.58%), Malaysian nationals (91.84%), contracted malaria in Papua New Guinea (46.11%), uncomplicated disease (77.89%), or hospitalised cases (97.86%). The most prominent Plasmodium species diagnosed were P. vivax (52.67%) and P. falciparum (35.81%). CONCLUSIONS: Surveillance, disease detection, and medical follow-up must be carried out thoroughly for individuals who returned from malaria-endemic countries. It is also necessary to promote pre-travel preventive education as well as chemoprophylaxis to travellers heading to endemic areas.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium knowlesi , Humans , Male , Adult , Middle Aged , Malaysia/epidemiology , Retrospective Studies , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Malaria, Falciparum/epidemiology
7.
Trop Med Int Health ; 27(8): 705-718, 2022 08.
Article in English | MEDLINE | ID: mdl-35716113

ABSTRACT

OBJECTIVES: To characterise the state-wide epidemiology of indigenous knowlesi malaria in Sarawak from 2011 to 2019. METHODS: Longitudinal retrospective study was conducted based on Sarawak knowlesi malaria surveillance data recorded from 2011-2019. Only indigenous cases were included and information extracted for analysis comprised age, sex, occupation, ethnicity, case severity, hospital admission and parasite density. RESULTS: Over the 9 years, 8473 indigenous knowlesi malaria cases were recorded. Age group 40-49 years, males, plantation workers and Iban communities recorded the highest percentage of cases in each demographic variable. Most of the cases were uncomplicated (n = 7292; 86.1%) and 89.6% (n = 7589) of the total cases were reported with ≤20 000 parasites/µl of blood. Age group and ethnic group are associated with the severity of knowlesi malaria in Sarawak. Multivariable logistic regression indicated that the age group 60+ years had the highest odds of developing severe knowlesi malaria compared with other age groups (AOR 2.48; 95% CI 1.22, 5.02; p = 0.012). Bidayuh patients were more likely to develop severe knowlesi malaria than Ibans, the largest ethnic group among knowlesi malaria patients (AOR 1.97; 95% CI 1.31, 2.97; p = 0.001). CONCLUSIONS: Identification of risk groups is important for the implementation of prevention programs and treatments targeting at specific group to combat knowlesi malaria effectively.


Subject(s)
Malaria , Plasmodium knowlesi , Adult , Humans , Longitudinal Studies , Malaria/epidemiology , Malaria/parasitology , Malaysia/epidemiology , Male , Middle Aged , Retrospective Studies
9.
Insects ; 13(2)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35206768

ABSTRACT

The Leucosphyrus Group of mosquitoes are the major simian malaria vectors in Malaysia. Accurate species identification is required to help in curbing the spread of simian malaria. The aim of the study is to provide an accurate molecular method for identifying the four important Anopheles vector species found in Malaysia. Mosquito specimens were collected from various localities in Malaysia, where simian malaria cases were reported. DNA from 122 mosquito specimens was tested to develop a multiplex polymerase chain reaction (PCR) assay. The specificity of this assay was tested against other mosquito species. Molecular identification of the species was further confirmed by analysing the internal transcribed spacer 2 (ITS2) DNA region of the specimens. Anopheles balabacensis and An. latens showed two distinct clades in the phylogenetic tree. The multiplex PCR assay was developed based on the ITS2 region for the identification of Anopheles introlatus (298-299 bp), Anopheles latens (197-198 bp), Anopheles cracens (421-426 bp), and Anopheles balabacensis (224-228 bp). This method will be useful to accurately identify the major Anopheles Leucosphyrus Group species in Malaysia, which are difficult to identify morphologically, to determine the correct vector as well as its geographical distribution.

10.
Sci Rep ; 12(1): 571, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022501

ABSTRACT

Dengue remains a major public threat and existing dengue control/surveillance programs lack sensitivity and proactivity. More efficient methods are needed. A cluster randomized controlled trial was conducted for 18 months to determine the efficacy of using a combination of gravid oviposition sticky (GOS) traps and dengue non-structural 1 (NS1) antigen for early surveillance of dengue among Aedes mosquito. Eight residential apartments were randomly assigned into intervention and control groups. GOS traps were placed at the intervention apartments weekly to trap Aedes mosquitoes and these tested for dengue NS1 antigen. When dengue-positive pool was detected, the community were notified and advised to execute protective measures. Fewer dengue cases were recorded in the intervention group than the control. Detection of NS1-positive mosquitoes was significantly associated with GOS Aedes index (rs = 0.68, P < 0.01) and occurrence of dengue cases (rs = 0.31, P < 0.01). Participants' knowledge, attitude, and practice (KAP) toward dengue control indicated significant improvement for knowledge (P < 0.01), practice (P < 0.01) and total scores (P < 0.01). Most respondents thought this surveillance method is good (81.2%) and supported its use nationwide. Thus, GOS trap and dengue NS1 antigen test can supplement the current dengue surveillance/control, in alignment with the advocated integrated vector management for reducing Aedes-borne diseases.


Subject(s)
Aedes/virology , Dengue/prevention & control , Mosquito Control/instrumentation , Mosquito Vectors/virology , Viral Nonstructural Proteins/isolation & purification , Animals , Dengue/epidemiology , Female , Health Knowledge, Attitudes, Practice , Humans , Malaysia/epidemiology , Male , Mosquito Control/statistics & numerical data , Population Surveillance/methods
11.
Sci Rep ; 12(1): 354, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013403

ABSTRACT

Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.


Subject(s)
Anopheles/metabolism , DNA/blood , Feeding Behavior , Insect Vectors/metabolism , Malaria/veterinary , Monkey Diseases/transmission , Plasmodium knowlesi/pathogenicity , Polymerase Chain Reaction , Animals , Haplorhini/blood , Haplorhini/genetics , Host-Parasite Interactions , Humans , Malaria/blood , Malaria/parasitology , Malaria/transmission , Monkey Diseases/blood , Monkey Diseases/parasitology , Sus scrofa/blood , Sus scrofa/genetics
12.
Malar J ; 20(1): 426, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34715864

ABSTRACT

BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies. METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor. RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km. CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.


Subject(s)
Anopheles/physiology , Disease Eradication/statistics & numerical data , Malaria/epidemiology , Mosquito Vectors/parasitology , Plasmodium knowlesi/physiology , Animal Distribution , Animals , Malaysia/epidemiology
13.
Adv Parasitol ; 113: 131-189, 2021.
Article in English | MEDLINE | ID: mdl-34620382

ABSTRACT

Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Animals , Asia, Southeastern/epidemiology , Humans , Malaria/prevention & control , Mosquito Vectors
14.
Parasit Vectors ; 14(1): 184, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33794965

ABSTRACT

BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods. METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria. RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P < 0.05). CONCLUSIONS: Mosquito Magnet has a promising ability to catch An. introlatus and An. cracens, the important vectors of knowlesi and other simian malarias in Peninsular Malaysia. The ability of Mosquito Magnet to catch some of the Anopheles mosquito species is comparable to HLC and makes it an ethical and safer alternative.


Subject(s)
Anopheles/parasitology , Macaca fascicularis/parasitology , Malaria/transmission , Malaria/veterinary , Mosquito Control/methods , Mosquito Control/standards , Mosquito Vectors/parasitology , Animals , Humans , Malaysia , Mosquito Control/instrumentation
15.
Acta Trop ; 216: 105829, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33465350

ABSTRACT

The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.


Subject(s)
Aedes/virology , Dengue/prevention & control , Mosquito Control/methods , Oviposition , Viral Nonstructural Proteins/analysis , Animals , Dengue/epidemiology , Dengue/transmission , Entomology , Female , Humans , Seroepidemiologic Studies
16.
PLoS Negl Trop Dis ; 14(12): e0008900, 2020 12.
Article in English | MEDLINE | ID: mdl-33382697

ABSTRACT

Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.


Subject(s)
Malaria/veterinary , Plasmodium knowlesi , Animals , Asia, Southeastern/epidemiology , Humans , Macaca , Malaria/epidemiology , Malaria/parasitology , Monkey Diseases/epidemiology , Monkey Diseases/parasitology , Mosquito Vectors
17.
Parasit Vectors ; 13(1): 414, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32787974

ABSTRACT

BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes. METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software. RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar. CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.


Subject(s)
Culicidae/microbiology , Wolbachia , Aedes/microbiology , Animals , Anopheles/microbiology , Bacterial Outer Membrane Proteins/genetics , Culex/microbiology , Genes, Bacterial , Insect Control , Malaysia/epidemiology , Malvaceae/microbiology , Mosquito Vectors/microbiology , Pathology, Molecular , Phylogeny , Prevalence , RNA, Ribosomal, 16S/genetics , Vector Borne Diseases/prevention & control , Wolbachia/genetics , Wolbachia/isolation & purification
18.
Malar J ; 19(1): 241, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32650774

ABSTRACT

BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR. METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR. RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples. CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.


Subject(s)
Diagnostic Tests, Routine/methods , Plasmodium knowlesi/isolation & purification , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction/methods , Diagnostic Tests, Routine/instrumentation , Humans , Malaysia , Polymerase Chain Reaction/instrumentation , Sensitivity and Specificity
19.
Trans R Soc Trop Med Hyg ; 114(9): 700-703, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32511702

ABSTRACT

Five children in Pos Lenjang, Pahang, Malaysia were PCR-positive for vivax malaria and were admitted to the hospital from 5 to 26 July 2019. One of the patients experienced three episodes of recurrence of vivax malaria. Microsatellite analysis showed that reinfection is unlikely. Drug resistance analysis indicated that Riamet (artemether-lumefantrine) is effective. Cytochrome P450 2D6 (CYP2D6) testing showed that this patient has defective CYP2D6 function. Primaquine failure to clear the Plasmodium vivax hypnozoites may be the cause of recurring infections in this patient. This report highlights the need for the development of liver-stage curative antimalarials that do not require metabolism by the CYP2D6 enzyme.


Subject(s)
Antimalarials , Malaria, Vivax , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Child , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/therapeutic use , Humans , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaysia , Plasmodium vivax/genetics , Primaquine/therapeutic use , Recurrence
20.
Acta Trop ; 211: 105596, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32589995

ABSTRACT

Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.


Subject(s)
Macaca/parasitology , Malaria/veterinary , Monkey Diseases/parasitology , Animals , Humans , Malaria/epidemiology , Malaria/parasitology , Malaysia/epidemiology , Monkey Diseases/epidemiology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...