Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(3): 414-423, 2023 03.
Article in English | MEDLINE | ID: mdl-36702857

ABSTRACT

Phenotypic plasticity in ancestral populations is hypothesized to facilitate adaptation, but evidence is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel adaptive changes has not been explored. The most general finding is that ancestral responses to a new environment are reversed following adaptation (known as reversion). We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared with zinc-sensitive plants. We show that ancestral plasticity that moves expression closer to the optimum value in the new environment influences the evolution of gene expression among genes that are likely to be involved in adaptation and increases the chance that genes are recruited repeatedly during adaptation. However, despite convergence in gene expression levels between independently adapted lineages, ancestral plasticity does not influence how similar expression values of adaptive genes become. Surprisingly, we also observed that ancestral plasticity that increases fitness often becomes genetically determined and fixed, that is, genetically assimilated. These results emphasize the important role of ancestral plasticity in parallel adaptation.


Subject(s)
Silene , Silene/genetics , Biological Evolution , Zinc , Adaptation, Physiological , Acclimatization
2.
Mol Biol Evol ; 38(9): 3724-3736, 2021 08 23.
Article in English | MEDLINE | ID: mdl-33950261

ABSTRACT

The impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly understood. In particular, capacity of species to adapt rapidly (in hundreds of generations or less), reproducibly and predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also colonized isolated, disused mines with phytotoxic, zinc-contaminated soils. To test whether rapid, parallel adaptation to anthropogenic pollution has taken place, we used reduced representation sequencing (ddRAD) to reconstruct the evolutionary history of geographically proximate mine and coastal population pairs and found largely independent colonization of mines from different coastal sites. Furthermore, our results show that parallel evolution of zinc tolerance has occurred without gene flow spreading adaptive alleles between mine populations. In genomic regions where signatures of selection were detected across multiple mine-coast pairs, we identified genes with functions linked to physiological differences between the putative ecotypes, although genetic differentiation at specific loci is only partially shared between mine populations. Our results are consistent with a complex, polygenic genetic architecture underpinning rapid adaptation. This shows that even under a scenario of strong selection and rapid adaptation, evolutionary responses to human activities (and other environmental challenges) may be idiosyncratic at the genetic level and, therefore, difficult to predict from genomic data.


Subject(s)
Metals, Heavy , Adaptation, Physiological/genetics , Ecotype , Environmental Pollution , Genetic Drift , Humans , Metals, Heavy/analysis
3.
R Soc Open Sci ; 7(1): 191112, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32218941

ABSTRACT

The guppy (Poecilia reticulata) is a model species in ecology and evolution. Many studies have examined effects of predators on guppy behaviour, reproduction, survival strategies, feeding and other life-history traits, but few have studied variation in their parasite diversity. We surveyed parasites of 18 Trinidadian populations of guppy, to provide insight on the geographical mosaic of parasite variability, which may act as a source of natural selection acting on guppies. We found 21 parasite species, including five new records for Trinidad. Spatial variation in parasite diversity was significantly higher than that of piscine predators, and significant variation in parasite richness among individuals and populations was correlated with: (i) host size, (ii) snail species richness, and (iii) the distance between populations. Differences in parasite species richness are likely to play an important, yet underestimated role in the biology of this model species of vertebrate ecology and evolution.

4.
Nat Commun ; 8(1): 1294, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101318

ABSTRACT

Red Queen host-parasite co-evolution can drive adaptations of immune genes by positive selection that erodes genetic variation (Red Queen arms race) or results in a balanced polymorphism (Red Queen dynamics) and long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously by analysing the major histocompatibility complex (MHC) in guppies (Poecilia reticulata and P. obscura) and swamp guppies (Micropoecilia picta). Sub-functionalisation of MHC alleles into 'supertypes' explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen arms race. Building on the divergent allele advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution.


Subject(s)
Cyprinodontiformes/genetics , Cyprinodontiformes/immunology , Evolution, Molecular , Major Histocompatibility Complex , Poecilia/genetics , Poecilia/immunology , Alleles , Animals , Computer Simulation , Genetic Variation , Genetics, Population , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Linkage Disequilibrium , Models, Genetic , Models, Immunological , Polymorphism, Genetic , Selection, Genetic , Species Specificity
5.
6.
Ecol Evol ; 7(13): 4568-4581, 2017 07.
Article in English | MEDLINE | ID: mdl-28690787

ABSTRACT

The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii. Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.

7.
R Soc Open Sci ; 3(10): 160299, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27853546

ABSTRACT

The relative importance of genetic versus epigenetic changes in adaptive evolution is a hotly debated topic, with studies showing that some species appear to be able to adapt rapidly without significant genetic change. Epigenetic mechanisms may be particularly important for the evolutionary potential of species with long maturation times and low reproductive potential ('K-strategists'), particularly when faced with rapidly changing environmental conditions. Here we study the transcriptome of two populations of the winter skate (Leucoraja ocellata), a typical 'K-strategist', in Atlantic Canada; an endemic population in the southern Gulf of St Lawrence and a large population on the Scotian Shelf. The endemic population has been able to adapt to a 10°C higher water temperature over short evolutionary time (7000 years), dramatically reducing its body size (by 45%) significantly below the minimum maturation size of Scotian Shelf and other populations of winter skate, as well as exhibiting other adaptations in life history and physiology. We demonstrate that the adaptive response to selection has an epigenetic basis, cataloguing 3653 changes in gene expression that may have enabled this species to rapidly respond to the novel environment. We argue that the epigenetic augmentation of species evolutionary potential (its regulation though gene expression) can enable K-strategists to survive and adapt to different environments, and this mechanism may be particularly important for the persistence of sharks, skates and rays in the light of future climate change.

8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4607-4608, 2016 11.
Article in English | MEDLINE | ID: mdl-26643934

ABSTRACT

Complete mitochondrial genomes of two northwest Atlantic sand lances (Ammodytes americanus and Ammodytes dubius) were sequenced, assembled, and annotated. Both genomes were 16 519 bp in length and were differentiated by a genetic distance of only 0.01. Furthermore, mitochondrial gene annotations were identical for both species. Phylogenetic analysis revealed that divergence between the two species was shallow, relative to other members of the genus.


Subject(s)
Genome, Mitochondrial , Perciformes/genetics , Animals , Atlantic Ocean , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/isolation & purification , DNA, Mitochondrial/metabolism , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism , Open Reading Frames/genetics , Perciformes/classification , Phylogeny , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics , Sequence Analysis, DNA
9.
PLoS One ; 9(9): e106380, 2014.
Article in English | MEDLINE | ID: mdl-25259573

ABSTRACT

Hybrid zones provide unprecedented opportunity for the study of the evolution of reproductive isolation, and the extent of hybridization across individuals and genomes can illuminate the degree of isolation. We examine patterns of interchromosomal linkage disequilibrium (ILD) and the presence of hybridization in Atlantic cod, Gadus morhua, in previously identified hybrid zones in the North Atlantic. Here, previously identified clinal loci were mapped to the cod genome with most (∼70%) occurring in or associated with (<5 kb) coding regions representing a diverse array of possible functions and pathways. Despite the observation that clinal loci were distributed across three linkage groups, elevated ILD was observed among all groups of clinal loci and strongest in comparisons involving a region of low recombination along linkage group 7. Evidence of ILD supports a hypothesis of divergence hitchhiking transitioning to genome hitchhiking consistent with reproductive isolation. This hypothesis is supported by Bayesian characterization of hybrid classes present and we find evidence of common F1 hybrids in several regions consistent with frequent interbreeding, yet little evidence of F2 or backcrossed individuals. This work suggests that significant barriers to hybridization and introgression exist among these co-occurring groups of cod either through strong selection against hybrid individuals, or genetic incompatibility and intrinsic barriers to hybridization. In either case, the presence of strong clinal trends, and little gene flow despite extensive hybridization supports a hypothesis of reproductive isolation and cryptic speciation in Atlantic cod. Further work is required to test the degree and nature of reproductive isolation in this species.


Subject(s)
Gadus morhua/genetics , Hybridization, Genetic , Linkage Disequilibrium , Animals , Bayes Theorem , Chromosomes , Gene Frequency , Genetics, Population , Genome , Polymorphism, Single Nucleotide , Reproductive Isolation
10.
Philos Trans R Soc Lond B Biol Sci ; 369(1648)2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24958917

ABSTRACT

It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.


Subject(s)
Adaptation, Biological/genetics , Genetic Speciation , Islands , Models, Genetic , Plant Dispersal/genetics , Plants/genetics , Reproductive Isolation , Australia , Computer Simulation , Gene Flow/genetics , Genetics, Population , Genotype , Geography , Species Specificity
11.
Mol Ecol ; 23(16): 3957-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24954669

ABSTRACT

The genotyping of highly polymorphic multigene families across many individuals used to be a particularly challenging task because of methodological limitations associated with traditional approaches. Next-generation sequencing (NGS) can overcome most of these limitations, and it is increasingly being applied in population genetic studies of multigene families. Here, we critically review NGS bioinformatic approaches that have been used to genotype the major histocompatibility complex (MHC) immune genes, and we discuss how the significant advances made in this field are applicable to population genetic studies of gene families. Increasingly, approaches are introduced that apply thresholds of sequencing depth and sequence similarity to separate alleles from methodological artefacts. We explain why these approaches are particularly sensitive to methodological biases by violating fundamental genotyping assumptions. An alternative strategy that utilizes ultra-deep sequencing (hundreds to thousands of sequences per amplicon) to reconstruct genotypes and applies statistical methods on the sequencing depth to separate alleles from artefacts appears to be more robust. Importantly, the 'degree of change' (DOC) method avoids using arbitrary cut-off thresholds by looking for statistical boundaries between the sequencing depth for alleles and artefacts, and hence, it is entirely repeatable across studies. Although the advances made in generating NGS data are still far ahead of our ability to perform reliable processing, analysis and interpretation, the community is developing statistically rigorous protocols that will allow us to address novel questions in evolution, ecology and genetics of multigene families. Future developments in third-generation single molecule sequencing may potentially help overcome problems that still persist in de novo multigene amplicon genotyping when using current second-generation sequencing approaches.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Multigene Family , Sequence Analysis, DNA/methods , Cluster Analysis , Computational Biology , DNA Copy Number Variations , Genetics, Population , Genotyping Techniques , Humans , Major Histocompatibility Complex/genetics
12.
Mol Ecol Resour ; 14(4): 753-67, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24400817

ABSTRACT

We address the bioinformatic issue of accurately separating amplified genes of the major histocompatibility complex (MHC) from artefacts generated during high-throughput sequencing workflows. We fit observed ultra-deep sequencing depths (hundreds to thousands of sequences per amplicon) of allelic variants to expectations from genetic models of copy number variation (CNV). We provide a simple, accurate and repeatable method for genotyping multigene families, evaluating our method via analyses of 209 b of MHC class IIb exon 2 in guppies (Poecilia reticulata). Genotype repeatability for resequenced individuals (N = 49) was high (100%) within the same sequencing run. However, repeatability dropped to 83.7% between independent runs, either because of lower mean amplicon sequencing depth in the initial run or random PCR effects. This highlights the importance of fully independent replicates. Significant improvements in genotyping accuracy were made by greatly reducing type I genotyping error (i.e. accepting an artefact as a true allele), which may occur when using low-depth allele validation thresholds used by previous methods. Only a small amount (4.9%) of type II error (i.e. rejecting a genuine allele as an artefact) was detected through fully independent sequencing runs. We observed 1-6 alleles per individual, and evidence of sharing of alleles across loci. Variation in the total number of MHC class II loci among individuals, both among and within populations was also observed, and some genotypes appeared to be partially hemizygous; total allelic dosage added up to an odd number of allelic copies. Collectively, observations provide evidence of MHC CNV and its complex basis in natural populations.


Subject(s)
Gene Dosage , Genotyping Techniques/methods , Histocompatibility Antigens Class II/genetics , Multigene Family , Poecilia/genetics , Alleles , Animals , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...