Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895309

ABSTRACT

The transcription factor BACH1 regulates heme homeostasis and oxidative stress responses and promotes cancer metastasis upon aberrant accumulation. Its stability is controlled by two F-box protein ubiquitin ligases, FBXO22 and FBXL17. Here we show that the homodimeric BTB domain of BACH1 functions as a previously undescribed quaternary structure degron, which is deciphered by the two F-box proteins via distinct mechanisms. After BACH1 is released from chromatin by heme, FBXO22 asymmetrically recognizes a cross-protomer interface of the intact BACH1 BTB dimer, which is otherwise masked by the co-repressor NCOR1. If the BACH1 BTB dimer escapes the surveillance by FBXO22 due to oxidative modifications, its quaternary structure integrity is probed by a pair of FBXL17, which simultaneously engage and remodel the two BTB protomers into E3-bound monomers for ubiquitination. By unveiling the multifaceted regulatory mechanisms of BACH1 stability, our studies highlight the abilities of ubiquitin ligases to decode high-order protein assemblies and reveal therapeutic opportunities to block cancer invasion via compound-induced BACH1 destabilization.

2.
Commun Biol ; 7(1): 208, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38379085

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Adult , Animals , Humans , Mice , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Down-Regulation , Endocytosis , ErbB Receptors/genetics , ErbB Receptors/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Ubiquitin/metabolism
3.
EMBO Rep ; 24(4): e55571, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36744302

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.


Subject(s)
Bardet-Biedl Syndrome , Cilia , Animals , Cilia/metabolism , Protein Transport , Signal Transduction , Bardet-Biedl Syndrome/genetics , Receptors, G-Protein-Coupled/genetics , Ubiquitination
4.
Commun Biol ; 5(1): 780, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918402

ABSTRACT

Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/metabolism , Humans , Mice , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Ubiquitin
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33827988

ABSTRACT

In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.


Subject(s)
COVID-19/metabolism , Cell Cycle Proteins/metabolism , Cullin Proteins/metabolism , Multiprotein Complexes/metabolism , Open Reading Frames , SARS-CoV-2/metabolism , Viral Proteins/metabolism , COVID-19/genetics , Cell Cycle Proteins/genetics , Cullin Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
6.
Dev Cell ; 56(5): 569-570, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33689766

ABSTRACT

Cell-cell fusion is essential to the development of multicellular organisms and is driven by remodeling of the actin cytoskeleton. In this issue of Developmental Cell, Rodríguez-Pérez et al. reveal how CRL3-dependent mono-ubiquitylation modulates cell fusion by controlling the dynamics of cytoskeletal rearrangements.


Subject(s)
Actins , Ubiquitin , Actin Cytoskeleton , Cell Fusion , Cytoskeleton
7.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257023

ABSTRACT

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Cell Movement , F-Box Proteins/antagonists & inhibitors , F-Box Proteins/genetics , F-Box Proteins/metabolism , Female , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Kaplan-Meier Estimate , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Neoplasm Metastasis , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transcriptional Activation
8.
Proc Natl Acad Sci U S A ; 111(44): 15729-34, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331889

ABSTRACT

Protein kinase A (PKA) controls major aspects of neurite outgrowth and morphogenesis and plays an essential role in synaptic plasticity and memory. However, the molecular mechanism(s) of PKA action on neurite sprouting and activity are still unknown. Here, we report that in response to neurotrophin or cAMP stimulation the RING ligase praja2 ubiquitinates and degrades NOGO-A, a major inhibitor of neurite outgrowth in mammalian brain. Genetic silencing of praja2 severely inhibited neurite extension of differentiating neuroblastoma cells and mesencephalic neurons and axon outgrowth and sprouting of striatal terminals in developing rat brain. This phenotype was rescued when both praja2 and NOGO-A were depleted, suggesting that NOGO-A is, indeed, a biologically relevant target of praja2 in neuronal cells. Our findings unveil a novel mechanism that functionally couples cAMP signaling with the proteolytic turnover of NOGO-A, positively impacting on neurite outgrowth in mammalian brain.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Mesencephalon/metabolism , Myelin Proteins/metabolism , Neurites/metabolism , Proteolysis , Animals , Axons/metabolism , Cell Line, Tumor , Cyclic AMP/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Mesencephalon/cytology , Myelin Proteins/genetics , Nogo Proteins , Rats , Rats, Wistar , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
J Cell Sci ; 126(Pt 24): 5566-77, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24101730

ABSTRACT

The mitochondrial influx and efflux of Ca(2+) play a relevant role in cytosolic and mitochondrial Ca(2+) homeostasis, and contribute to the regulation of mitochondrial functions in neurons. The mitochondrial Na(+)/Ca(2+) exchanger, which was first postulated in 1974, has been primarily investigated only from a functional point of view, and its identity and localization in the mitochondria have been a matter of debate over the past three decades. Recently, a Li(+)-dependent Na(+)/Ca(2+) exchanger extruding Ca(2+) from the matrix has been found in the inner mitochondrial membrane of neuronal cells. However, evidence has been provided that the outer membrane is impermeable to Ca(2+) efflux into the cytoplasm. In this study, we demonstrate for the first time that the nuclear-encoded NCX3 isoform (1) is located on the outer mitochondrial membrane (OMM) of neurons; (2) colocalizes and immunoprecipitates with AKAP121 (also known as AKAP1), a member of the protein kinase A anchoring proteins (AKAPs) present on the outer membrane; (3) extrudes Ca(2+) from mitochondria through AKAP121 interaction in a PKA-mediated manner, both under normoxia and hypoxia; and (4) improves cell survival when it works in the Ca(2+) efflux mode at the level of the OMM. Collectively, these results suggest that, in neurons, NCX3 regulates mitochondrial Ca(2+) handling from the OMM through an AKAP121-anchored signaling complex, thus promoting cell survival during hypoxia.


Subject(s)
A Kinase Anchor Proteins/metabolism , Calcium/metabolism , Neurons/physiology , Sodium-Calcium Exchanger/physiology , Animals , Cell Death , Cell Hypoxia , Cell Line , Cell Survival , Cricetinae , Dogs , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Binding , Protein Interaction Mapping , Protein Transport , Rats
10.
Nat Commun ; 4: 1822, 2013.
Article in English | MEDLINE | ID: mdl-23652010

ABSTRACT

Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin-proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin-proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin-proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Animals , Brain Neoplasms/enzymology , Cell Line, Tumor , Cell Proliferation , Glioblastoma/enzymology , HEK293 Cells , Hippo Signaling Pathway , Humans , Male , Mice , Mice, Nude , Models, Biological , Molecular Sequence Data , Protein Binding , Ubiquitination
11.
Adv Exp Med Biol ; 961: 203-9, 2013.
Article in English | MEDLINE | ID: mdl-23224881

ABSTRACT

Mitochondria are now recognized as one of the main intracellular calcium-storing organelles which play a key role in the intracellular calcium signalling. Indeed, besides performing oxidative phosphorylation, mitochondria are able to sense and shape calcium (Ca(2+)) transients, thus controlling cytosolic Ca(2+) signals and Ca(2+)-dependent protein activity. It has been well established for many years that mitochondria have a huge capacity to accumulate calcium. While the physiological significance of this pathway was hotly debated until relatively recently, it is now clear that the ability of mitochondria in calcium handling is a ubiquitous phenomenon described in every cell system in which the issue has been addressed.In this chapter, we will review the molecular mechanisms involved in the regulation of mitochondrial calcium cycling in physiological conditions with particular regard to the role played by the mitochondrial Na(+)/Ca(2+) exchanger.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Sodium-Calcium Exchanger/metabolism , Animals , Humans , Mitochondrial Proteins/genetics , Sodium-Calcium Exchanger/genetics
12.
J Clin Endocrinol Metab ; 97(11): 4253-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22948757

ABSTRACT

INTRODUCTION: In thyroid cells, binding of TSH to its receptor increases cAMP levels, sustaining thyrocytes growth and hormone production. The main cAMP effector enzyme is protein kinase A (PKA). Praja2 is a widely expressed RING (Really Interesting New Gene) ligase, which degrades the regulatory subunits of PKA, thus controlling the strength and duration of PKA signaling in response to cAMP. Differentiated thyroid cancer expresses a functional TSH receptor, and its growth and progression are positively regulated by TSH and cAMP signaling. AIM: We aimed to analyze the expression of praja2 in a group of 36 papillary thyroid cancer (PTC), 14 benign nodules, and six anaplastic thyroid cancers (ATC). METHODS: We measured praja2 mRNA levels by quantitative RT-PCR and praja2 expression by Western blot and immunohistochemistry. Possible association between praja2 mRNA and the presence of known mutations was evaluated. RESULTS: We found a statistical significant increase of mRNA levels in PTC tissue samples, compared with benign nodules and ATC. In particular, mRNA levels were maximal in differentiated thyroid cancer (PTC), progressively decreasing in more aggressive tumors, ATC having the lowest amount of praja2 mRNA. Accordingly, higher levels of praja2 protein were detected in lysates from PTC, compared with ATC. By immunohistochemistry, in PTC sections we observed a marked increase of cytoplasmic praja2 signal, which significantly decreased in less differentiated thyroid tumors, completely disappearing in ATC. Studies in cultured cells stably expressing RET/PTC1 oncogene or mutant BRAF revealed a direct correlation between praja2 mRNA levels and malignant phenotype of transformed cells. Similar results were obtained using thyroid cancer tissues carrying the same mutations. CONCLUSIONS: praja2 is markedly overexpressed in differentiated thyroid cancer, and its levels inversely correlate with the malignant phenotype of the tumor. Thus, praja2 is a novel cancer-related gene whose expression is linked to the histotype and mutational status of the thyroid tumor.


Subject(s)
Carcinoma, Papillary/metabolism , DNA-Binding Proteins/metabolism , Thyroid Gland/metabolism , Thyroid Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Cells, Cultured , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Female , Humans , Male , Middle Aged , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics
14.
Nat Cell Biol ; 13(4): 412-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21423175

ABSTRACT

Activation of G-protein-coupled receptors (GPCRs) mobilizes compartmentalized pulses of cyclic AMP. The main cellular effector of cAMP is protein kinase A (PKA), which is assembled as an inactive holoenzyme consisting of two regulatory (R) and two catalytic (PKAc) subunits. cAMP binding to R subunits dissociates the holoenzyme and releases the catalytic moiety, which phosphorylates a wide array of cellular proteins. Reassociation of PKAc and R components terminates the signal. Here we report that the RING ligase praja2 controls the stability of mammalian R subunits. Praja2 forms a stable complex with, and is phosphorylated by, PKA. Rising cAMP levels promote praja2-mediated ubiquitylation and subsequent proteolysis of compartmentalized R subunits, leading to sustained substrate phosphorylation by the activated kinase. Praja2 is required for efficient nuclear cAMP signalling and for PKA-mediated long-term memory. Thus, praja2 regulates the total concentration of R subunits, tuning the strength and duration of PKA signal output in response to cAMP.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/metabolism , Enzyme Stability , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , DNA-Binding Proteins/genetics , Enzyme Activation , HEK293 Cells , Humans , Long-Term Potentiation/physiology , Mice , Neuroblastoma , Neurons/cytology , Neurons/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics
15.
Trends Cell Biol ; 18(12): 604-13, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18951795

ABSTRACT

Mitochondria are highly specialized organelles and major players in fundamental aspects of cell physiology. In yeast, energy metabolism and coupling of mitochondrial activity to growth and survival is controlled by the protein kinase A pathway. In higher eukaryotes, modulation of the so-called A-kinase anchor protein (AKAP) complex regulates mitochondrial dynamics and activity, adapting the oxidative machinery and the metabolic pathway to changes in physiological demand. Protein kinases and phosphatases are assembled by AKAPs within transduction units, providing a mechanism to control signaling events at mitochondria and other target organelles. Ubiquitin-mediated proteolysis of signal transducers and effectors provides an additional layer of complexity in the regulation of mitochondria homeostasis. Genetic evidence indicates that alteration of one or more components of these biochemical pathways leads to mitochondrial dysfunction and human diseases. In this review, we focus on the emerging role of AKAP scaffolds and the proteasome pathway in the control of oxidative metabolism, organelle dynamics and the mitochondrial signaling network. These aspects are crucial elements for maintaining a proper energy balance and cellular lifespan.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cyclic AMP/metabolism , Mitochondria/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Humans , Oxidation-Reduction , Signal Transduction/physiology
16.
J Biol Chem ; 283(16): 10919-29, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18223254

ABSTRACT

PTPD1 is a cytosolic nonreceptor tyrosine phosphatase and a positive regulator of the Src-epidermal growth factor transduction pathway. We show that PTPD1 localizes along actin filaments and at adhesion plaques. PTPD1 forms a stable complex via distinct molecular modules with actin, Src tyrosine kinase, and focal adhesion kinase (FAK), a scaffold protein kinase enriched at adhesion plaques. Overexpression of PTPD1 promoted cell scattering and migration, short hairpin RNA-mediated silencing of endogenous PTPD1, or expression of PTPD1 mutants lacking either catalytic activity (PTPD1(C1108S)) or the FERM domain (PTPD1(Delta1-325)) significantly reduced cell motility. PTPD1 and Src catalytic activities were both required for epidermal growth factor-induced FAK autophosphorylation at its active site and for downstream propagation of ERK1/2 signaling. Our findings demonstrate that PTPD1 is a component of a multivalent scaffold complex nucleated by FAK at specific intracellular sites. By modulating Src-FAK signaling at adhesion sites, PTPD1 promotes the cytoskeleton events that induce cell adhesion and migration.


Subject(s)
Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Actins/chemistry , Animals , Catalysis , Cell Adhesion , Cytoskeleton/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Glutathione Transferase/metabolism , Humans , Mice , Models, Biological , NIH 3T3 Cells , Phosphorylation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL