Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Transplant Cell Ther ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866240

ABSTRACT

The use of immunotherapies for the treatment of cancer in children, adolescents, and young adults has become common. As the use of immunotherapy has expanded, including in earlier lines of therapy, it has become evident that several aspects of how these immunotherapies impact longer-term outcomes among survivors are understudied. Traditional cancer therapies like alkylating and platin agents carry the greatest risk of infertility, but little is known about the impact of novel immunotherapies on fertility. This topic is of great interest to patients, patient advocates, and clinicians. In this article, we review immunotherapeutic agents used to treat childhood and young adult cancers and discuss potential mechanisms by which they may impact fertility based on the known interplay between the immune system and reproductive organs. We highlight the relative paucity of high-quality literature examining these late effects. We discuss interventions to optimize fertility preservation (FP) for our patients. Conducting longitudinal, collaborative, and prospective research on the fertility outcomes of pediatric and young adult patients with cancer who receive immunotherapy is critical to learn how to effectively counsel our patients on long-term fertility outcomes and indications for FP procedures. Collection of patient-level data will be necessary to draft evidence-based guidelines on which providers can make therapy recommendations.

2.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38697107

ABSTRACT

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Subject(s)
Immunotherapy , Lipids , RNA , Tumor Microenvironment , Animals , Dogs , Female , Humans , Mice , Antigens, Neoplasm/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glioblastoma/therapy , Glioblastoma/immunology , Glioma/therapy , Glioma/immunology , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , RNA/chemistry , RNA/therapeutic use , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry
3.
BMC Infect Dis ; 24(1): 515, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778275

ABSTRACT

BACKGROUND: Lagenidium deciduum is an oomycete that can cause infections in mammals that present similarly to pythiosis and mucormycosis. Most of the existing case reports have occurred in canines and have been fatal. In animals, medical therapy has not been successful, so surgical excision is the mainstay of treatment. Lagenidium sp. infections in humans are rare. There is only one case of a human Lagenidium sp. infection in the literature, and it presented as an ocular infection. The human ocular infection was resistant to medical therapy and required a penetrating keratoplasty for cure. Additional reports of effective therapy are needed to guide management of this emerging pathogen. We present the first case of a cutaneous Lagenidium deciduum infection in a human patient, which is also the first documented case of a Lagenidium deciduum infection in an immunocompromised host of any species. CASE PRESENTATION: An 18-year-old female with relapsed acute myeloid leukemia, awaiting a haploidentical stem cell transplant, presented with erythematous cutaneous lesions on her left hip and bilateral buttocks that enlarged and blackened over several days. About 1 week later, boil-like lesions appeared on her bilateral buttocks. The skin lesions were initially presumed to be bacterial in origin, so the patient was treated with clindamycin and cefepime with little improvement. Upon further investigation, fungal cultures and skin biopsies revealed aseptate hyphae, so the patient was switched to isavuconazole and amphotericin B due to concern for mucormycosis. Phenotypic characterization and DNA sequencing were performed by the Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, which identified the causal fungal organism as Lagenidium deciduum. All of her cutaneous lesions were surgically excised, and the patient was treated with micafungin, terbinafine, doxycycline, and azithromycin. Micafungin and terbinafine were continued until she achieved engraftment post-transplant. CONCLUSIONS: We report the first successful treatment of a human Lagenidium infection in an immunocompromised host through a combination of aggressive surgical excision and prolonged antifungal therapy during the prolonged neutropenia associated with allogeneic stem cell transplant. Prompt diagnosis and management may prevent disseminated oomycosis.


Subject(s)
Antifungal Agents , Lagenidium , Leukemia, Myeloid, Acute , Humans , Female , Leukemia, Myeloid, Acute/complications , Antifungal Agents/therapeutic use , Adolescent , Lagenidium/genetics , Dermatomycoses/microbiology , Dermatomycoses/drug therapy , Immunocompromised Host
4.
Pediatr Transplant ; 28(4): e14784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766976

ABSTRACT

BACKGROUND: The goal of this study was to assess the effect of donor type and pre-transplant immunotherapy (IST) on outcomes of hematopoietic stem cell transplantation (HSCT) for children and young adults with severe aplastic anemia (SAA). METHODS: This retrospective, multi-center study included 52 SAA patients, treated in 5 pediatric transplant programs in Florida, who received HSCT between 2010 and 2020 as the first- or second-line treatment. RESULTS: The median age at HSCT for all 52 patients was 15 years (range 1-25). The 3-year overall survival (OS) by donor type were as follows: 95% [95% CI 85.4-99] for matched related donors (MRD) (N = 24), 84% [95% CI 63.5-99] for haploidentical (N = 13), and 71% [95% CI 36-99] for matched unrelated donors (MUD) (N = 7). The 3-year OS was 81% [95% CI 69.7-99] for all patients, 90.5% [95% CI 79.5-99] for non-IST patients (N = 27), and 70% [95% CI 51-99] for IST patients (N = 24) (log-rank p = .04). Survival of haploidentical HSCT (haplo-HSCT) recipients with post-transplant cyclophosphamide (PTCy) (N = 13) was excellent for both groups: 100% for non-IST patients (N = 3) and 80% for IST patients (N = 10). The 3-year OS for patients with previous IST by donor type in groups where >5 patients were available was 78.8% [95% CI 52.3-99] for haplo-HSCT (N = 10) and 66.7% [95% CI 28.7-99] for MUD (N = 6). Although it appears that patients receiving HSCT ≥6 months after the start of IST had worse survival, the number of patients in each category was small and log-rank was not significant(p = .65). CONCLUSIONS: Patients receiving MUD and haplo-HSCT with PTCy had similar outcomes, suggesting that haplo-HSCT with PTCy could be included in randomized trials of upfront IST versus alternative donor HSCT.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Humans , Anemia, Aplastic/therapy , Adolescent , Child , Retrospective Studies , Male , Female , Child, Preschool , Young Adult , Adult , Infant , Treatment Outcome , Immunosuppression Therapy/methods , Tissue Donors , Immunosuppressive Agents/therapeutic use
5.
Transplant Cell Ther ; 30(2): 155-170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37863355

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , United States , Humans , Child , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Tumor Microenvironment
6.
Front Immunol ; 14: 1239132, 2023.
Article in English | MEDLINE | ID: mdl-37965315

ABSTRACT

Introduction: Mediport use as a clinical option for the administration of chimeric antigen receptor T cell (CAR T cell) therapy in patients with B-cell malignancies has yet to be standardized. Concern for mediport dislodgement, cell infiltration, and ineffective therapy delivery to systemic circulation has resulted in variable practice with intravenous administration of CAR T cell therapy. With CAR T cell commercialization, it is important to establish practice standards for CAR T cell delivery. We conducted a study to establish usage patterns of mediports in the clinical setting and provide a standard of care recommendation for mediport use as an acceptable form of access for CAR T cell infusions. Methods: In this retrospective cohort study, data on mediport use and infiltration rate was collected from a survey across 34 medical centers in the Pediatric Real-World CAR Consortium, capturing 504 CAR T cell infusion routes across 489 patients. Data represents the largest, and to our knowledge sole, report on clinical CAR T cell infusion practice patterns since FDA approval and CAR T cell commercialization in 2017. Results: Across 34 sites, all reported tunneled central venous catheters, including Broviac® and Hickman® catheters, as accepted standard venous options for CAR T cell infusion. Use of mediports as a standard clinical practice was reported in 29 of 34 sites (85%). Of 489 evaluable patients with reported route of CAR T cell infusion, 184 patients were infused using mediports, with no reported incidences of CAR T cell infiltration. Discussion/Conclusion: Based on current clinical practice, mediports are a commonly utilized form of access for CAR T cell therapy administration. These findings support the safe practice of mediport usage as an accepted standard line option for CAR T cell infusion.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes , Humans , Child , Retrospective Studies , Infusions, Intravenous , Administration, Intravenous
7.
Acta Biomater ; 172: 466-479, 2023 12.
Article in English | MEDLINE | ID: mdl-37788737

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.


Subject(s)
Bone Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Neoplasms/metabolism , Bone Neoplasms/metabolism , Cell Communication , Tumor Microenvironment
8.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865164

ABSTRACT

Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.

9.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993158

ABSTRACT

To prospectively determine whether brain tumors will respond to immune checkpoint inhibitors (ICIs), we developed a novel mRNA vaccine as a viral mimic to elucidate cytokine release from brain cancer cells in vitro. Our results indicate that cytokine signatures following mRNA challenge differ substantially from ICI responsive versus non-responsive murine tumors. These findings allow for creation of a diagnostic assay to quickly assess brain tumor immunogenicity, allowing for informed treatment with ICI or lack thereof in poorly immunogenic settings.

10.
medRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993772

ABSTRACT

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

12.
Clin Cancer Res ; 29(2): 341-348, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36302175

ABSTRACT

PURPOSE: Succinate dehydrogenase (dSDH)-deficient tumors, including pheochromocytoma/paraganglioma, hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinoma (HLRCC-RCC), and gastrointestinal stromal tumors (GIST) without KIT or platelet-derived growth factor receptor alpha mutations are often resistant to cytotoxic chemotherapy, radiotherapy, and many targeted therapies. We evaluated guadecitabine, a dinucleotide containing the DNA methyltransferase inhibitor decitabine, in these patient populations. PATIENTS AND METHODS: Phase II study of guadecitabine (subcutaneously, 45 mg/m2/day for 5 consecutive days, planned 28-day cycle) to assess clinical activity (according to RECISTv.1.1) across three strata of patients with dSDH GIST, pheochromocytoma/paraganglioma, or HLRCC-RCC. A Simon optimal two-stage design (target response rate 30% rule out 5%) was used. Biologic correlates (methylation and metabolites) from peripheral blood mononuclear cells (PBMC), serum, and urine were analyzed. RESULTS: Nine patients (7 with dSDH GIST, 1 each with paraganglioma and HLRCC-RCC, 6 females and 3 males, age range 18-57 years) were enrolled. Two patients developed treatment-limiting neutropenia. No partial or complete responses were observed (range 1-17 cycles of therapy). Biologic activity assessed as global demethylation in PBMCs was observed. No clear changes in metabolite concentrations were observed. CONCLUSIONS: Guadecitabine was tolerated in patients with dSDH tumors with manageable toxicity. Although 4 of 9 patients had prolonged stable disease, there were no objective responses. Thus, guadecitabine did not meet the target of 30% response rate across dSDH tumors at this dose, although signs of biologic activity were noted.


Subject(s)
Adrenal Gland Neoplasms , Biological Products , Carcinoma, Renal Cell , Gastrointestinal Stromal Tumors , Kidney Neoplasms , Paraganglioma , Pheochromocytoma , Male , Female , Adult , Humans , Child , Adolescent , Young Adult , Middle Aged , Succinate Dehydrogenase/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Gastrointestinal Stromal Tumors/genetics , Leukocytes, Mononuclear/metabolism , Paraganglioma/drug therapy , Paraganglioma/genetics
13.
Cytotherapy ; 25(1): 20-32, 2023 01.
Article in English | MEDLINE | ID: mdl-36280438

ABSTRACT

BACKGROUND AIMS: The field of cell and gene therapy in oncology has moved rapidly since 2017 when the first cell and gene therapies, Kymriah followed by Yescarta, were approved by the Food and Drug Administration in the United States, followed by multiple other countries. Since those approvals, several new products have gone on to receive approval for additional indications. Meanwhile, efforts have been made to target different cancers, improve the logistics of delivery and reduce the cost associated with novel cell and gene therapies. Here, we highlight various cell and gene therapy-related technologies and advances that provide insight into how these new technologies will speed the translation of these therapies into the clinic. CONCLUSIONS: In this review, we provide a broad overview of the current state of cell and gene therapy-based approaches for cancer treatment - discussing various effector cell types and their sources, recent advances in both CAR and non-CAR genetic modifications, and highlighting a few promising approaches for increasing in vivo efficacy and persistence of therapeutic drug products.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Genetic Therapy , Gene Editing
14.
Cancer Rep (Hoboken) ; 6(2): e1753, 2023 02.
Article in English | MEDLINE | ID: mdl-36346013

ABSTRACT

BACKGROUND: Oncofertility is a developing field of increasing importance, particularly in pediatric oncology, where most patients are likely to survive long-term and have not yet had the opportunity to have children. AIMS: We performed a quality improvement initiative to increase our rates of fertility preservation counseling and referral through the implementation of a pediatric oncofertility team, and we report outcomes 7 years following implementation of our initiative. METHODS AND RESULTS: We compare our baseline oncofertility survey to 44 post-intervention survey respondents and electronic medical record documentation for 149 patients treated in 2019. Ninety-five percent of post-intervention survey respondents recalled fertility counseling (baseline 70%, p = .004) and 89.3% were appropriately referred for fertility preservation (baseline 50%, p = .017). Counseling was documented in 60.4% of charts; 81% of patients analyzed by chart review were appropriately referred for fertility preservation. Fertility preservation outcomes differed by sex assigned at birth. CONCLUSION: Creation of an oncofertility team produced improvements in fertility counseling and fertility preservation referral across an extended period of time.


Subject(s)
Fertility Preservation , Neoplasms , Infant, Newborn , Humans , Child , Fertility Preservation/methods , Neoplasms/therapy , Counseling/methods , Medical Oncology , Referral and Consultation
15.
Blood Adv ; 6(23): 6040-6050, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35939781

ABSTRACT

Cancer outcomes with chemotherapy are inferior in patients of minority racial/ethnic groups and those with obesity. Chimeric antigen receptor (CAR) T-cell therapy has transformed outcomes for relapsed/refractory hematologic malignancies, but whether its benefits extend commensurately to racial/ethnic minorities and patients with obesity is poorly understood. With a primary focus on patients with B-cell acute lymphoblastic leukemia (B-ALL), we retrospectively evaluated the impact of demographics and obesity on CAR T-cell therapy outcomes in adult and pediatric patients with hematologic malignancies treated with CAR T-cell therapy across 5 phase 1 clinical trials at the National Cancer Institute from 2012 to 2021. Among 139 B-ALL CAR T-cell infusions, 28.8% of patients were Hispanic, 3.6% were Black, and 29.5% were overweight/obese. No significant associations were found between race, ethnicity, or body mass index (BMI) and complete remission rates, neurotoxicity, or overall survival. Hispanic patients were more likely to experience severe cytokine release syndrome compared with White non-Hispanic patients even after adjusting for leukemia disease burden and age (odds ratio, 4.5; P = .001). A descriptive analysis of patients with multiple myeloma (n = 24) and non-Hodgkin lymphoma (n = 23) displayed a similar pattern to the B-ALL cohort. Our findings suggest CAR T-cell therapy may provide substantial benefit across a range of demographics characteristics, including for those populations who are at higher risk for chemotherapy resistance and relapse. However, toxicity profiles may vary. Therefore, efforts to improve access to CAR therapy for underrepresented populations and elucidate mechanisms of differential toxicity among demographic groups should be prioritized.


Subject(s)
Hematologic Neoplasms , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Adult , Humans , Child , Immunotherapy, Adoptive/adverse effects , Antigens, CD19 , Ethnicity , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Lymphoma, B-Cell/drug therapy , Hematologic Neoplasms/drug therapy , Recurrence , Obesity/complications , Obesity/therapy
17.
Transplant Cell Ther ; 28(9): 605.e1-605.e8, 2022 09.
Article in English | MEDLINE | ID: mdl-35705177

ABSTRACT

Chimeric antigen receptor (CAR) T-cells serve to overcome chemotherapeutic resistance and have been proven to be highly effective in B-cell hematologic malignancies. Although initial use has been in patients with multiply relapsed/refractory disease, as CAR T-cells are used earlier in the treatment paradigm, it will be important to explore implications of this novel therapy on cancer late-effects. We sought to assess the current framework for considerations of fertility surrounding CAR T-cell use and identify opportunities for education and future research. To assess current practice patterns regarding post-CAR T-cell fertility, peri-CAR T-cell fertility guidance, utilization of fertility preservation surrounding CAR T-cell administration and identify future areas of research, a cross-sectional survey assessing practice patterns regarding fertility counseling and outcomes surrounding CAR T-cell therapy was distributed electronically to approximately 300 Center for International Blood and Marrow Transplant Research medical centers treating patients with CAR T-cell therapy in the United States and internationally between October 12 and November 2, 2021. One medical provider was asked to complete the study survey on behalf of their institution. We received 96 survey responses, of which 66 centers utilized CAR T-cells and provided at least partial responses that were used for the primary analysis. Centers were varied in demographics, experience in administering CAR T-cells, and aspects of patients receiving CAR T-cells. Eighteen centers exclusively treated pediatric patients, and patients at these centers were more likely to be treated for B-cell acute lymphoblastic leukemia. Seven pregnancies and 5 live births after CAR T-cells were reported from 6 centers (1 pediatric-only). Most centers had no established guidelines in place regarding fertility preservation in the peri-CAR T-cell period or regarding recommendations for avoiding pregnancy/fathering a child after receiving CAR T-cells. Areas for future research were elicited from responding centers and categorized into 3 broad themes, including: standardized peri-CAR T-cell fertility guidelines; long-term fertility outcomes after CAR T-cell therapy; impact of CAR T-cells on a developing fetus; and determining the relevance of studying fertility in patients who receive CAR T-cells. We identified a high degree of variability in peri-CAR T-cell guidance on avoidance of pregnancy/fathering a child, as well as a wide-range of practices surrounding referral for fertility preservation, the latter of which may be likely due to the fact that patients receiving CAR T-cells in the present era are likely multiply relapsed/refractory. In summary, this is the first report of several live-births following CAR T-cells, which highlights the important need for further research in CAR T-cell therapy and fertility, with a host of novel research questions identified.


Subject(s)
Hematologic Neoplasms , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Cross-Sectional Studies , Humans , Immunotherapy, Adoptive , T-Lymphocytes , United States
18.
Blood ; 140(5): 451-463, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35605184

ABSTRACT

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Animals , Antigens, CD19 , Cytokine Release Syndrome , Cytokines , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Recurrence , T-Lymphocytes
19.
Front Immunol ; 13: 846346, 2022.
Article in English | MEDLINE | ID: mdl-35273619

ABSTRACT

Advances from novel adoptive cellular therapies have yet to be fully realized for the treatment of children and young adults with solid tumors. This review discusses the strategies and preliminary results, including T-cell, NK-cell and myeloid cell-based therapies. While each of these approaches have shown some early promise, there remain challenges. These include poor trafficking to the tumor as well as a hostile tumor microenvironment with numerous immunosuppressive mechanisms which result in exhaustion of cellular therapies. We then turn our attention to new strategies proposed to address these challenges including novel clinical trials that are ongoing and in development.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Child , Humans , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Tumor Microenvironment , Young Adult
20.
J Pediatr Hematol Oncol ; 44(2): e518-e520, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34978782

ABSTRACT

Current guidelines recommend sampling each central-access lumen during the initial evaluation of febrile pediatric oncology patients. We investigated this recommendation's validity at centers implementing a diagnostic stewardship program to reduce blood cultures in critically ill children. Among 146 oncology patients admitted to the intensive care unit, there were 34 eligible blood culture-sets. Eleven (34%) sets yielded discordant results, most commonly cultivating a likely pathogen from one lumen and no growth from another. As hospitals move toward reducing testing overuse, these results emphasize the continued importance of culturing each central-access lumen to optimize the detection of bacteremia in the initial evaluation of critically ill pediatric oncology patients.


Subject(s)
Bacteremia , Catheter-Related Infections , Catheterization, Central Venous , Neoplasms , Sepsis , Bacteremia/diagnosis , Catheter-Related Infections/diagnosis , Catheters , Child , Critical Illness , Humans , Neoplasms/complications , Sepsis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...