Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cancer Cell ; 42(4): 623-645.e10, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38490212

ABSTRACT

Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Neoplasms/genetics
3.
Cancer Immunol Res ; 11(4): 450-465, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36753604

ABSTRACT

Cross-presentation of tumor antigens by dendritic cells (DC) is crucial to prime, stimulate and restimulate CD8+ T cells. This process is important in initiating and maintaining an antitumor response. Here, we show that the presence of conventional type 1 DCs (cDC1), a DC subtype that excels in cross-presentation, in the tumor correlated with response to neoadjuvant immune checkpoint blockade (ICB) in melanoma. This led us to hypothesize that patients failing to respond to ICB could benefit from enhanced cross-presentation of tumor antigens. We therefore established a cross-presentation assay to screen over 5,500 compounds for enhancers of DC cross-presentation using induced T-cell proliferation as the readout. We identified 145 enhancers, including AZD5582, an antagonist of inhibitor of apoptosis proteins (IAP) cIAP1, cIAP2, and XIAP. AZD5582 treatment led to DC activation of the noncanonical NF-kB pathway, enhanced antigen import from endolysosomes into the cytosol, and increased expression of genes involved in cross-presentation. Furthermore, it upregulated expression of CD80, CD86, MHC class II, CD70 and secretion of TNF by DCs. This enhanced DC activation and maturation program was observed also in tumor-bearing mice upon AZD5582 treatment, culminating in an increased frequency of systemic tumor antigen-specific CD8+ T cells. Our results merit further exploration of AZD5582 to increase antigen cross-presentation for improving the clinical benefit of ICB in patients who are unlikely to respond to ICB.


Subject(s)
Cross-Priming , Melanoma , Mice , Animals , Dendritic Cells , Antigen Presentation , Antigens, Neoplasm , Inhibitor of Apoptosis Proteins/metabolism , Cell Proliferation
4.
Melanoma Res ; 33(1): 12-26, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36545919

ABSTRACT

While immunotherapy has become standard-of-care for cutaneous melanoma patients, primary and acquired resistance prevent long-term benefits for about half of the late-stage patients. Pre-clinical models are essential to increase our understanding of the resistance mechanisms of melanomas, aiming to improve the efficacy of immunotherapy. Here, we present two novel syngeneic transplantable murine melanoma cell lines derived from the same primary tumor induced on BrafV600E Pten-/- mice: MeVa2.1 and MeVa2.2. Derivatives of these cell lines expressing the foreign antigen ovalbumin (dOVA) showed contrasting immune-mediated tumor control. MeVa2.2.dOVA melanomas were initially controlled in immune-competent hosts until variants grew out that had lost their antigens. By contrast, MeVa2.1.dOVA tumors were not controlled despite presenting the strong OVA antigen, as well as infiltration of tumor-reactive CD8+ T cells. MeVa2.1.dOVA displayed reduced sensitivity to T cell-mediated killing and growth inhibition in vitro by both IFN-γ and TNF-α. MeVa2.1.dOVA tumors were transiently controlled in vivo by either targeted therapy, adoptive T cell transfer, regulatory T cell depletion, or immune checkpoint blockade. MeVa2.1.dOVA could thus become a valuable melanoma model to evaluate novel immunotherapy combinations aiming to overcome immune resistance mechanisms.


Subject(s)
Melanoma , Skin Neoplasms , Mice , Animals , Melanoma/pathology , Skin Neoplasms/genetics , Immunotherapy , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Antigens
5.
Cell Rep Med ; 3(6): 100655, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35688159

ABSTRACT

Tumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8+ T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8+ T cell pressure. We identify all components, RNF31, RBCK1, and SHARPIN, of the linear ubiquitination chain assembly complex (LUBAC). Genetic and pharmacologic ablation of RNF31, an E3 ubiquitin ligase, strongly sensitizes cancer cells to NK and CD8+ T cell killing. This occurs in a tumor necrosis factor (TNF)-dependent manner, causing loss of A20 and non-canonical IKK complexes from TNF receptor complex I. A small-molecule RNF31 inhibitor sensitizes colon carcinoma organoids to TNF and greatly enhances bystander killing of MHC antigen-deficient tumor cells. These results merit exploration of RNF31 inhibition as a clinical pharmacological opportunity for immunotherapy-refractory cancers.


Subject(s)
Tumor Escape , Ubiquitin-Protein Ligases , Killer Cells, Natural , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
6.
Nat Commun ; 13(1): 1923, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395848

ABSTRACT

The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.


Subject(s)
Interferon-gamma , Neoplasms , Receptors, Interferon , Ubiquitin-Protein Ligases , Humans , Immune Checkpoint Inhibitors , Interferon-gamma/metabolism , Neoplasms/immunology , Receptors, Interferon/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Interferon gamma Receptor
7.
Clin Cancer Res ; 27(19): 5389-5400, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34230026

ABSTRACT

PURPOSE: Combining anti-PD-1 + anti-CTLA-4 immune-checkpoint blockade (ICB) shows improved patient benefit, but it is associated with severe immune-related adverse events and exceedingly high cost. Therefore, there is a dire need to predict which patients respond to monotherapy and which require combination ICB treatment. EXPERIMENTAL DESIGN: In patient-derived melanoma xenografts (PDX), human tumor microenvironment (TME) cells were swiftly replaced by murine cells upon transplantation. Using our XenofilteR deconvolution algorithm we curated human tumor cell RNA reads, which were subsequently subtracted in silico from bulk (tumor cell + TME) patients' melanoma RNA. This produced a purely tumor cell-intrinsic signature ("InTumor") and a signature comprising tumor cell-extrinsic RNA reads ("ExTumor"). RESULTS: We show that whereas the InTumor signature predicts response to anti-PD-1, the ExTumor predicts anti-CTLA-4 benefit. In PDX, InTumorLO, but not InTumorHI, tumors are effectively eliminated by cytotoxic T cells. When used in conjunction, the InTumor and ExTumor signatures identify not only patients who have a substantially higher chance of responding to combination treatment than to either monotherapy, but also those who are likely to benefit little from anti-CTLA-4 on top of anti-PD-1. CONCLUSIONS: These signatures may be exploited to distinguish melanoma patients who need combination ICB blockade from those who likely benefit from either monotherapy.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Animals , CTLA-4 Antigen , Humans , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Melanoma/genetics , Mice , Programmed Cell Death 1 Receptor/therapeutic use , RNA , Tumor Microenvironment
8.
Cancer Res ; 81(7): 1775-1787, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33531370

ABSTRACT

Although immune checkpoint blockade (ICB) has shown remarkable clinical benefit in a subset of patients with melanoma and lung cancer, most patients experience no durable benefit. The receptor tyrosine kinase AXL is commonly implicated in therapy resistance and may serve as a marker for therapy-refractory tumors, for example in melanoma, as we previously demonstrated. Here, we show that enapotamab vedotin (EnaV), an antibody-drug conjugate targeting AXL, effectively targets tumors that display insensitivity to immunotherapy or tumor-specific T cells in several melanoma and lung cancer models. In addition to its direct tumor cell killing activity, EnaV treatment induced an inflammatory response and immunogenic cell death in tumor cells and promoted the induction of a memory-like phenotype in cytotoxic T cells. Combining EnaV with tumor-specific T cells proved superior to either treatment alone in models of melanoma and lung cancer and induced ICB benefit in models otherwise insensitive to anti-PD-1 treatment. Our findings indicate that targeting AXL-expressing, immunotherapy-resistant tumors with EnaV causes an immune-stimulating tumor microenvironment and enhances sensitivity to ICB, warranting further investigation of this treatment combination. SIGNIFICANCE: These findings show that targeting AXL-positive tumor fractions with an antibody-drug conjugate enhances antitumor immunity in several humanized tumor models of melanoma and lung cancer.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunoconjugates/therapeutic use , Lung Neoplasms/therapy , Melanoma/therapy , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Combined Modality Therapy , Drug Resistance, Neoplasm/immunology , Drug Synergism , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immunoconjugates/administration & dosage , Immunotherapy , Lung Neoplasms/pathology , Male , Melanoma/pathology , Mice , Mice, Nude , Mice, Transgenic , Molecular Targeted Therapy/methods , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
9.
Nat Commun ; 11(1): 3946, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770055

ABSTRACT

Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Melanoma/drug therapy , Nerve Tissue Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Nerve Growth Factor/metabolism , Skin Neoplasms/drug therapy , T-Lymphocytes, Cytotoxic/immunology , Animals , Antineoplastic Agents, Immunological/therapeutic use , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , RNA-Seq , Receptors, Nerve Growth Factor/antagonists & inhibitors , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Escape/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
11.
Cell ; 178(3): 585-599.e15, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31303383

ABSTRACT

New opportunities are needed to increase immune checkpoint blockade (ICB) benefit. Whereas the interferon (IFN)γ pathway harbors both ICB resistance factors and therapeutic opportunities, this has not been systematically investigated for IFNγ-independent signaling routes. A genome-wide CRISPR/Cas9 screen to sensitize IFNγ receptor-deficient tumor cells to CD8 T cell elimination uncovered several hits mapping to the tumor necrosis factor (TNF) pathway. Clinically, we show that TNF antitumor activity is only limited in tumors at baseline and in ICB non-responders, correlating with its low abundance. Taking advantage of the genetic screen, we demonstrate that ablation of the top hit, TRAF2, lowers the TNF cytotoxicity threshold in tumors by redirecting TNF signaling to favor RIPK1-dependent apoptosis. TRAF2 loss greatly enhanced the therapeutic potential of pharmacologic inhibition of its interaction partner cIAP, another screen hit, thereby cooperating with ICB. Our results suggest that selective reduction of the TNF cytotoxicity threshold increases the susceptibility of tumors to immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Humans , Inhibitor of Apoptosis Proteins/metabolism , Interferon-gamma/metabolism , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred C57BL , Neoplasms/mortality , Neoplasms/therapy , RNA, Guide, Kinetoplastida/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Interferon/deficiency , Receptors, Interferon/genetics , Signal Transduction/drug effects , TNF Receptor-Associated Factor 2/deficiency , TNF Receptor-Associated Factor 2/genetics , Tumor Necrosis Factor-alpha/pharmacology , Interferon gamma Receptor
12.
Cancer Immunol Res ; 6(11): 1417-1425, 2018 11.
Article in English | MEDLINE | ID: mdl-30143536

ABSTRACT

Metastatic breast cancer is a fatal disease that responds poorly to treatment. Cancer vaccines targeting antigens expressed by metastatic breast cancer cells and cancer stem cells could function as anticancer therapies. Cripto-1 is an oncofetal protein overexpressed in invasive breast cancer and cancer-initiating cells. In this study, we explored the potential of a Cripto-1-encoding DNA vaccine to target breast cancer in preclinical mouse models. BALB/c mice and BALB-neuT mice were treated with a DNA vaccine encoding mouse Cripto-1 (mCr-1). BALB/c mice were challenged with murine breast cancer 4T1 cells or TUBO spheres; BALB-neuT mice spontaneously developed breast cancer. Tumor growth was followed in all mouse models and lung metastases were evaluated. In vitro assays were performed to identify the immune response elicited by vaccination. Vaccination against mCr-1 reduced primary tumor growth in the 4T1 metastatic breast cancer model and reduced lung metastatic burden. In BALB-neuT mice, because the primary tumors are Cripto-1 negative, vaccination against mCr-1 did not affect primary tumors but did reduce lung metastatic burden. Spheroid-cultured TUBO cells, derived from a BALB/neuT primary tumor, develop a cancer stem cell-like phenotype and express mCr-1. We observed reduced tumor growth in vaccinated mice after challenge with TUBO spheres. Our data indicate that vaccination against Cripto-1 results in a protective immune response against mCr-1 expressing and metastasizing cells. Targeting Cripto-1 by vaccination holds promise as an immunotherapy for treatment of metastatic breast cancer. Cancer Immunol Res; 6(11); 1417-25. ©2018 AACR.


Subject(s)
Cancer Vaccines/pharmacology , Epidermal Growth Factor/genetics , Mammary Neoplasms, Experimental/therapy , Membrane Glycoproteins/genetics , Neoplasm Proteins/genetics , Neoplastic Stem Cells/drug effects , Vaccines, DNA/pharmacology , Animals , Cell Line, Tumor , Epidermal Growth Factor/immunology , Female , Immunity, Humoral , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Membrane Glycoproteins/immunology , Mice, Inbred BALB C , Neoplasm Proteins/immunology , Neoplastic Stem Cells/immunology
13.
Mol Ther ; 26(6): 1482-1493, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29735366

ABSTRACT

Adoptive cell therapy (ACT) is becoming a prominent alternative therapeutic treatment for cancer patients relapsing on traditional therapies. In parallel, antibodies targeting immune checkpoint molecules, such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) and cell death protein 1 pathway (PD-1), are rapidly being approved for multiple cancer types, including as first line therapy for PD-L1-expressing non-small-cell lung cancer. The combination of ACT and checkpoint blockade could substantially boost the efficacy of ACT. In this study, we generated a novel self-delivering small interfering RNA (siRNA) (sdRNA) that knocked down PD-1 expression on healthy donor T cells as well as patient-derived tumor-infiltrating lymphocytes (TIL). We have developed an alternative chemical modification of RNA backbone for improved stability and increased efficacy. Our results show that T cells treated with sdRNA specific for PD-1 had increased interferon γ (IFN-γ) secreting capacity and that this modality of gene expression interference could be utilized in our rapid expansion protocol for production of TIL for therapy. TIL expanded in the presence of PD-1-specific sdRNA performed with increased functionality against autologous tumor as compared to control TIL. This method of introducing RNAi into T cells to modify the expression of proteins could easily be adopted into any ACT protocol and will lead to the exploration of new combination therapies.


Subject(s)
Lung Neoplasms/metabolism , Lung Neoplasms/therapy , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/metabolism , Cell- and Tissue-Based Therapy/methods , Flow Cytometry , HeLa Cells , Humans , Immunotherapy, Adoptive/methods , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung Neoplasms/immunology , Melanoma/metabolism , Programmed Cell Death 1 Receptor/genetics , RNA Interference/physiology
14.
Nat Med ; 24(2): 203-212, 2018 02.
Article in English | MEDLINE | ID: mdl-29334371

ABSTRACT

Intratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach. We developed an antibody-drug conjugate, AXL-107-MMAE, comprising a human AXL antibody linked to the microtubule-disrupting agent monomethyl auristatin E. We found that AXL-107-MMAE, as a single agent, displayed potent in vivo anti-tumor activity in patient-derived xenografts, including melanoma, lung, pancreas and cervical cancer. By eliminating distinct populations in heterogeneous melanoma cell pools, AXL-107-MMAE and MAPK pathway inhibitors cooperatively inhibited tumor growth. Furthermore, by inducing AXL transcription, BRAF/MEK inhibitors potentiated the efficacy of AXL-107-MMAE. These findings provide proof of concept for the premise that rationalized combinatorial targeting of distinct populations in heterogeneous tumors may improve therapeutic effect, and merit clinical validation of AXL-107-MMAE in both treatment-naive and drug-resistant cancers in mono- or combination therapy.


Subject(s)
Immunoconjugates/pharmacology , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/immunology , Genetic Heterogeneity/drug effects , Humans , Immunoconjugates/immunology , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Mice , Oligopeptides/chemistry , Oligopeptides/immunology , Oligopeptides/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/immunology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/immunology , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/pharmacology , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
16.
J Immunother Cancer ; 5(1): 73, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28923105

ABSTRACT

BACKGROUND: Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. METHODS: Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. RESULTS: We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. CONCLUSIONS: To increase the success of NK cell-based therapies of solid tumors, it is of great importance to promote their homing to the tumor site. In this study, we show that stable engineering of human primary NK cells to express a chemokine receptor thereby enhancing their migration is a promising strategy to improve anti-tumor responses following adoptive transfer of NK cells.


Subject(s)
Carcinoma, Renal Cell/therapy , Genetic Engineering/methods , Kidney Neoplasms/therapy , Killer Cells, Natural/cytology , Receptors, Interleukin-8B/genetics , Adoptive Transfer , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement , Cells, Cultured , Chemokine CXCL5/metabolism , Female , Humans , Interleukin-8/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Killer Cells, Natural/metabolism , Male , Receptors, Interleukin-8B/metabolism
17.
J Immunol ; 196(2): 759-66, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26673145

ABSTRACT

Treatment of cancer patients by adoptive T cell therapy has yielded promising results. In solid tumors, however, T cells encounter a hostile environment, in particular with increased inflammatory activity as a hallmark of the tumor milieu that goes along with abundant reactive oxygen species (ROS) that substantially impair antitumor activity. We present a strategy to render antitumor T cells more resilient toward ROS by coexpressing catalase along with a tumor specific chimeric Ag receptor (CAR) to increase their antioxidative capacity by metabolizing H2O2. In fact, T cells engineered with a bicistronic vector that concurrently expresses catalase, along with the CAR coexpressing catalase (CAR-CAT), performed superior over CAR T cells as they showed increased levels of intracellular catalase and had a reduced oxidative state with less ROS accumulation in both the basal state and upon activation while maintaining their antitumor activity despite high H2O2 levels. Moreover, CAR-CAT T cells exerted a substantial bystander protection of nontransfected immune effector cells as measured by CD3ζ chain expression in bystander T cells even in the presence of high H2O2 concentrations. Bystander NK cells, otherwise ROS sensitive, efficiently eliminate their K562 target cells under H2O2-induced oxidative stress when admixed with CAR-CAT T cells. This approach represents a novel means for protecting tumor-infiltrating cells from tumor-associated oxidative stress-mediated repression.


Subject(s)
Catalase/immunology , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Oxidative Stress/physiology , T-Lymphocytes/immunology , Blotting, Western , Bystander Effect/immunology , Cell Line , Cell Separation , Humans , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/immunology , Transfection
18.
PLoS One ; 10(6): e0129786, 2015.
Article in English | MEDLINE | ID: mdl-26076008

ABSTRACT

Reactive oxygen species (ROS) produced by the inducible NADPH oxidase type 2 (NOX2) complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC)- and regulatory T cell (T(reg)) mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA)) induced sarcoma model. Superoxide production by NOX2 requires the p47(phox) (NCF1) subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/*) have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+) retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg) and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell infiltration in the chemically induced MCA sarcoma model.


Subject(s)
Cell Transformation, Neoplastic , Membrane Glycoproteins/metabolism , Methylcholanthrene/adverse effects , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Sarcoma/etiology , Sarcoma/metabolism , Animals , CD4-CD8 Ratio , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Immunologic Memory , Immunomodulation , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Knockout , Mutation , NADPH Oxidase 2 , NADPH Oxidases/genetics , Oxidation-Reduction , Sarcoma/pathology , Sarcoma/therapy , Tumor Burden
19.
Hum Vaccin Immunother ; 9(10): 2189-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23884215

ABSTRACT

DNA vaccines have been shown to elicit tumor-protective cytotoxic T lymphocyte (CTL) immunity in preclinical models, but have shown limited efficacy in cancer patients. Plasmids used for DNA vaccines can stimulate several innate immune receptors, triggering the activation of master transcription factors, including interferon regulatory factor 3 (IRF3) and nuclear factor κ B (NF-κB). These transcription factors drive the production of type I interferons (IFNs) and pro-inflammatory cytokines, which promote the induction of CTL responses. Understanding the innate immune signaling pathways triggered by DNA vaccines that control the generation of CTL responses will increase our ability to design more effective vaccines. To gain insight into the contribution of these pathways, we vaccinated mice lacking different signaling components with plasmids encoding tyrosinase-related protein 2 (TRP2) or ovalbumin (OVA) using intradermal electroporation. Antigen-specific CTL responses were detected by intracellular IFN-γ staining and in vivo cytotoxicity. Mice lacking IRF3, IFN-α receptor, IL-1ß/IL-18, TLR9 or MyD88 showed similar CTL responses to wild-type mice, arguing that none of these molecules were required for the immunogenicity of DNA vaccines. To elucidate the role of NF-κB activation we co-vaccinated mice with pIκBα-SR, a plasmid encoding a mutant IκBα that blocks NF-κB activity. Mice vaccinated with pIκBα-SR and the TRP2-encoding plasmid (pTRP2) drastically reduced the frequencies of TRP2-specific CTLs and were unable to suppress lung melanoma metastasis in vivo, as compared with mice vaccinated only with pTRP2. Taken together these results indicate that the activation of NF-κB is essential for the immunogenicity of intradermal DNA vaccines.


Subject(s)
Cancer Vaccines/immunology , NF-kappa B/metabolism , T-Lymphocytes, Cytotoxic/immunology , Vaccination/methods , Vaccines, DNA/immunology , Animals , Cancer Vaccines/administration & dosage , Cytotoxicity Tests, Immunologic , Electroporation , Injections, Intradermal , Interferon-gamma/analysis , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/immunology , Mice , Ovalbumin/genetics , Ovalbumin/immunology , Vaccines, DNA/administration & dosage
20.
Hum Vaccin Immunother ; 8(11): 1682-93, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23111166

ABSTRACT

DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful "danger signals" by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance.


Subject(s)
Cancer Vaccines/immunology , Vaccines, DNA/immunology , Adaptive Immunity/immunology , Animals , Cancer Vaccines/therapeutic use , Humans , Immunity, Innate/immunology , Vaccines, DNA/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...