Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Virol ; 171: 105652, 2024 04.
Article in English | MEDLINE | ID: mdl-38364704

ABSTRACT

BACKGROUND: JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML). METHODS: Using next-generation sequencing (NGS) and bioinformatics tools, the NCCR was characterized in cerebrospinal fluid (CSF; N = 21) and brain tissue (N = 16) samples from PML patients (N = 25), urine specimens from systemic lupus erythematosus patients (N = 2), brain tissue samples from control individuals (N = 2) and waste-water samples (N = 5). Quantitative PCR was run in parallel for diagnostic PML samples. RESULTS: Archetype NCCR (i.e. ABCDEF block structure) and archetype-like NCCR harboring minor mutations were detected in two CSF samples and in one CSF sample and in one tissue sample, respectively. Among samples from PML patients, rearranged NCCRs were found in 8 out of 21 CSF samples and in 14 out of 16 brain tissue samples. Complete or partial deletion of the C and D blocks was characteristic of most rearranged JCPyV strains. From ten CSF samples and one tissue sample NCCR could not be amplified. CONCLUSIONS: Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.


Subject(s)
JC Virus , Leukoencephalopathy, Progressive Multifocal , Humans , JC Virus/genetics , High-Throughput Nucleotide Sequencing , DNA, Viral/genetics , DNA, Viral/cerebrospinal fluid , Leukoencephalopathy, Progressive Multifocal/diagnosis , Mutation
2.
J Infect Dis ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38365889

ABSTRACT

Progressive multifocal leukoencephalopathy (PML) is a rare neurological condition associated with reactivation of dormant JC polyomavirus (JCPyV). In this study, we characterized gene expression and JCPyV rearrangements in PML brain tissue. Infection of white matter astrocytes and oligodendrocytes as well as occasional brain cortex neurons was shown. PML brain harbored exclusively rearranged JCPyV variants. Viral transcripts covered the whole genome on both strands. Strong differential expression of human genes associated with neuroinflammation, blood-brain-barrier permeability and neurodegenerative diseases was shown. Pathway analysis revealed wide immune activation in PML brain. The study provides novel insights into the pathogenesis of PML.

3.
J Infect Dis ; 228(7): 829-833, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36988117

ABSTRACT

Progressive multifocal leukoencephalopathy (PML) is a severe neurological condition caused by reactivation of JC polyomavirus (JCPyV) in immunosuppression. Asymptomatic JCPyV persists in peripheral tissues. Upon reactivation, neurotropic rearrangements may emerge, and the virus gains access to the brain. To assess the mechanisms of PML pathogenesis, brain tissue material from PML patients was collected for small RNA sequencing. Upregulation of 8 microRNAs (miRNAs) in PML brain was validated using quantitative microRNA polymerase chain reaction (PCR). Bioinformatics tools were utilized to identify major associations of the upregulated miRNAs: neuroinflammation and blood-brain barrier disruption. The results indicate involvement of human miRNA regulation in PML pathogenesis.


Subject(s)
JC Virus , Leukoencephalopathy, Progressive Multifocal , MicroRNAs , Humans , Leukoencephalopathy, Progressive Multifocal/genetics , Leukoencephalopathy, Progressive Multifocal/pathology , JC Virus/genetics , MicroRNAs/genetics , Brain/pathology , Base Sequence
4.
Commun Med (Lond) ; 2: 65, 2022.
Article in English | MEDLINE | ID: mdl-35698660

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and fatalities globally since its emergence in late 2019. The virus was first detected in Finland in January 2020, after which it rapidly spread among the populace in spring. However, compared to other European nations, Finland has had a low incidence of SARS-CoV-2. To gain insight into the origins and turnover of SARS-CoV-2 lineages circulating in Finland in 2020, we investigated the phylogeographic and -dynamic history of the virus. Methods: The origins of SARS-CoV-2 introductions were inferred via Travel-aware Bayesian time-measured phylogeographic analyses. Sequences for the analyses included virus genomes belonging to the B.1 lineage and with the D614G mutation from countries of likely origin, which were determined utilizing Google mobility data. We collected all available sequences from spring and fall peaks to study lineage dynamics. Results: We observed rapid turnover among Finnish lineages during this period. Clade 20C became the most prevalent among sequenced cases and was replaced by other strains in fall 2020. Bayesian phylogeographic reconstructions suggested 42 independent introductions into Finland during spring 2020, mainly from Italy, Austria, and Spain. Conclusions: A single introduction from Spain might have seeded one-third of cases in Finland during spring in 2020. The investigations of the original introductions of SARS-CoV-2 to Finland during the early stages of the pandemic and of the subsequent lineage dynamics could be utilized to assess the role of transboundary movements and the effects of early intervention and public health measures.

5.
Emerg Infect Dis ; 28(6): 1229-1232, 2022 06.
Article in English | MEDLINE | ID: mdl-35378057

ABSTRACT

Multiple introductions of SARS-COV-2 Omicron variant BA.1 and BA.1.1. lineages to Finland were detected in early December 2021. Within 3 weeks, Omicron overtook Delta as the most common variant in the capital region. Sequence analysis demonstrated the emergence and spread through community transmission of a large cluster of BA.1.1 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Finland/epidemiology , Humans , SARS-CoV-2/genetics
6.
Emerg Infect Dis ; 27(12): 3137-3141, 2021 12.
Article in English | MEDLINE | ID: mdl-34708686

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Finland/epidemiology , Humans , Incidence , Phylogeny
7.
J Clin Virol ; 122: 104215, 2020 01.
Article in English | MEDLINE | ID: mdl-31783265

ABSTRACT

BACKGROUND: BKPyV is associated with polyomavirus-associated nephropathy (PVAN), a major cause of graft rejection in kidney transplant recipients (KTRs). Mutations occur in the transcriptional control region (TCR) of BKPyV, but whether they are required for the development of PVAN is not completely understood. To this end, we characterized BKPyV TCRs from KTRs to assess whether TCR mutations are associated with PVAN. STUDY DESIGN: We analyzed urine and plasma samples of fifteen KTRs with biopsy-confirmed PVAN, presumptive PVAN, or probable PVAN in order to explore the contents of the BKPyV virome. BKPyV TCRs were amplified and deep sequenced to characterize the viral strains. Alterations in block structures and transcription factor binding sites were investigated. RESULTS: The majority of sequences in both urine and plasma samples represented archetype BKPyV TCR. Minor populations harboring rearranged TCRs were detected in all patient groups. In one biopsy-confirmed PVAN patient rearranged TCRs predominated, and in another patient half of all reads represented rearranged sequences. CONCLUSIONS: Although archetype BKPyV predominated in most patients, highest proportions and highest numbers of rearranged strains were detected in association with PVAN. TCR mutations seem not necessary for the development of PVAN, but immunosuppression may allow increased viral replication giving rise to TCR variants with enhanced replication efficiency.


Subject(s)
BK Virus/genetics , BK Virus/pathogenicity , High-Throughput Nucleotide Sequencing , Kidney Diseases/virology , Adult , Aged , Cohort Studies , DNA, Viral/blood , Female , Humans , Male , Middle Aged , Mutation , Receptors, Antigen, T-Cell/genetics , Viral Load , Virus Replication , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...