Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10219, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702373

ABSTRACT

The difficulty of collecting maize leaf lesion characteristics in an environment that undergoes frequent changes, suffers varying illumination from lighting sources, and is influenced by a variety of other factors makes detecting diseases in maize leaves difficult. It is critical to monitor and identify plant leaf diseases during the initial growing period to take suitable preventative measures. In this work, we propose an automated maize leaf disease recognition system constructed using the PRF-SVM model. The PRFSVM model was constructed by combining three powerful components: PSPNet, ResNet50, and Fuzzy Support Vector Machine (Fuzzy SVM). The combination of PSPNet and ResNet50 not only assures that the model can capture delicate visual features but also allows for end-to-end training for smooth integration. Fuzzy SVM is included as a final classification layer to accommodate the inherent fuzziness and uncertainty in real-world image data. Five different maize crop diseases (common rust, southern rust, grey leaf spot, maydis leaf blight, and turcicum leaf blight along with healthy leaves) are selected from the Plant Village dataset for the algorithm's evaluation. The average accuracy achieved using the proposed method is approximately 96.67%. The PRFSVM model achieves an average accuracy rating of 96.67% and a mAP value of 0.81, demonstrating the efficacy of our approach for detecting and classifying various forms of maize leaf diseases.


Subject(s)
Plant Diseases , Plant Leaves , Support Vector Machine , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Plant Diseases/microbiology , Plant Leaves/microbiology , Algorithms , Fuzzy Logic
3.
Sci Rep ; 14(1): 4533, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402249

ABSTRACT

Postpartum Depression Disorder (PPDD) is a prevalent mental health condition and results in severe depression and suicide attempts in the social community. Prompt actions are crucial in tackling PPDD, which requires a quick recognition and accurate analysis of the probability factors associated with this condition. This concern requires attention. The primary aim of our research is to investigate the feasibility of anticipating an individual's mental state by categorizing individuals with depression from those without depression using a dataset consisting of text along with audio recordings from patients diagnosed with PPDD. This research proposes a hybrid PPDD framework that combines Improved Bi-directional Long Short-Term Memory (IBi-LSTM) with Transfer Learning (TL) based on two Convolutional Neural Network (CNN) architectures, respectively CNN-text and CNN audio. In the proposed model, the CNN section efficiently utilizes TL to obtain crucial knowledge from text and audio characteristics, whereas the improved Bi-LSTM module combines written material and sound data to obtain intricate chronological interpersonal relationships. The proposed model incorporates an attention technique to augment the effectiveness of the Bi-LSTM scheme. An experimental analysis is conducted on the PPDD online textual and speech audio dataset collected from UCI. It includes textual features such as age, women's health tracks, medical histories, demographic information, daily life metrics, psychological evaluations, and 'speech records' of PPDD patients. Data pre-processing is applied to maintain the data integrity and achieve reliable model performance. The proposed model demonstrates a great performance in better precision, recall, accuracy, and F1-score over existing deep learning models, including VGG-16, Base-CNN, and CNN-LSTM. These metrics indicate the model's ability to differentiate among women at risk of PPDD vs. non-PPDD. In addition, the feature importance analysis demonstrates that specific risk factors substantially impact the prediction of PPDD. The findings of this research establish a basis for improved precision and promptness in assessing the risk of PPDD, which may ultimately result in earlier implementation of interventions and the establishment of support networks for women who are susceptible to PPDD.


Subject(s)
Deep Learning , Depression, Postpartum , Depressive Disorder , Humans , Female , Depression, Postpartum/diagnosis , Depression, Postpartum/epidemiology , Prevalence , Risk Factors
4.
Article in English | MEDLINE | ID: mdl-38278999

ABSTRACT

Smart, secure, and environmentally friendly smart cities are all the rage in urban planning. Several technologies, including the Internet of Things (IoT) and edge computing, are used to develop smart cities. Early and accurate fire detection in a Smart city is always desirable and motivates the research community to create a more efficient model. Deep learning models are widely used for fire detection in existing research, but they encounter several issues in typical climate environments, such as foggy and normal. The proposed model lends itself to IoT applications for authentic fire surveillance because of its minimal configuration load. A hybrid Local Binary Pattern Convolutional Neural Network (LBP-CNN) and YOLO-V5 model-based fire detection model for smart cities in the foggy scenario is presented in this research. Additionally, we recommend a two-part technique for extracting features to be applied to YOLO throughout this article. Using a transfer learning technique, the first portion of the proposed approach for extracting features retrieves standard features. The section part is for retrieval of additional valuable information related to the current activity using the LBP (Local Binary Pattern) protective layer and classifications layers. This research utilizes an online Kaggle fire and smoke dataset with 13950 normal and foggy images. The proposed hybrid model is premised on a two-cascaded YOLO model. In the initial cascade, smoke and fire are detected in the normal surrounding region, and the second cascade fire is detected with density in a foggy environment. In experimental analysis, the proposed model achieved a fire and smoke detection precision rate of 96.25% for a normal setting, 93.2% for a foggy environment, and a combined detection average precision rate of 94.59%. The proposed hybrid system outperformed existing models in terms of better precision and density detection for fire and smoke.

5.
Sci Rep ; 14(1): 1337, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228707

ABSTRACT

Virtual machine (VM) integration methods have effectively proven an optimized load balancing in cloud data centers. The main challenge with VM integration methods is the trade-off among cost effectiveness, quality of service, performance, optimal resource utilization and compliance with service level agreement violations. Deep Learning methods are widely used in existing research on cloud load balancing. However, there is still a problem with acquiring noisy multilayered fluctuations in workload due to the limited resource-level provisioning. The long short-term memory (LSTM) model plays a vital role in the prediction of server load and workload provisioning. This research presents a hybrid model using deep learning with Particle Swarm Intelligence and Genetic Algorithm ("DPSO-GA") for dynamic workload provisioning in cloud computing. The proposed model works in two phases. The first phase utilizes a hybrid PSO-GA approach to address the prediction challenge by combining the benefits of these two methods in fine-tuning the Hyperparameters. In the second phase, CNN-LSTM is utilized. Before using the CNN-LSTM approach to forecast the consumption of resources, a hybrid approach, PSO-GA, is used for training it. In the proposed framework, a one-dimensional CNN and LSTM are used to forecast the cloud resource utilization at various subsequent time steps. The LSTM module simulates temporal information that predicts the upcoming VM workload, while a CNN module extracts complicated distinguishing features gathered from VM workload statistics. The proposed model simultaneously integrates the resource utilization in a multi-resource utilization, which helps overcome the load balancing and over-provisioning issues. Comprehensive simulations are carried out utilizing the Google cluster traces benchmarks dataset to verify the efficiency of the proposed DPSO-GA technique in enhancing the distribution of resources and load balancing for the cloud. The proposed model achieves outstanding results in terms of better precision, accuracy and load allocation.

6.
Sci Rep ; 13(1): 17381, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833379

ABSTRACT

Software-defined networking (SDN) has significantly transformed the field of network management through the consolidation of control and provision of enhanced adaptability. However, this paradigm shift has concurrently presented novel security concerns. The preservation of service path integrity holds significant importance within SDN environments due to the potential for malevolent entities to exploit network flows, resulting in a range of security breaches. This research paper introduces a model called "EnsureS", which aims to enhance the security of SDN by proposing an efficient and secure service path validation approach. The proposed approach utilizes a Lightweight Service Path Validation using Batch Hashing and Tag Verification, focusing on improving service path validation's efficiency and security in SDN environments. The proposed EnsureS system utilizes two primary techniques in order to validate service pathways efficiently. Firstly, the method utilizes batch hashing in order to minimize computational overhead. The proposed EnsureS algorithm enhances performance by aggregating packets through batches rather than independently; the hashing process takes place on each one in the service pathway. Additionally, the implementation of tag verification enables network devices to efficiently verify the authenticity of packets by leveraging pre-established trust relationships. EnsureS provides a streamlined and effective approach for validating service paths in SDN environments by integrating these methodologies. In order to assess the efficacy of the Proposed EnsureS, a comprehensive series of investigations were conducted within a simulated SDN circumstance. The efficacy of Proposed EnsureS was then compared to that of established methods. The findings of our study indicate that the proposed EnsureS solution effectively minimizes computational overhead without compromising on the established security standards. The implementation successfully reduces the impact of different types of attacks, such as route alteration and packet spoofing, increasing SDN networks' general integrity.

7.
Sensors (Basel) ; 23(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37765873

ABSTRACT

Brain tumors in Magnetic resonance image segmentation is challenging research. With the advent of a new era and research into machine learning, tumor detection and segmentation generated significant interest in the research world. This research presents an efficient tumor detection and segmentation technique using an adaptive moving self-organizing map and Fuzzyk-mean clustering (AMSOM-FKM). The proposed method mainly focused on tumor segmentation using extraction of the tumor region. AMSOM is an artificial neural technique whose training is unsupervised. This research utilized the online Kaggle Brats-18 brain tumor dataset. This dataset consisted of 1691 images. The dataset was partitioned into 70% training, 20% testing, and 10% validation. The proposed model was based on various phases: (a) removal of noise, (b) selection of feature attributes, (c) image classification, and (d) tumor segmentation. At first, the MR images were normalized using the Wiener filtering method, and the Gray level co-occurrences matrix (GLCM) was used to extract the relevant feature attributes. The tumor images were separated from non-tumor images using the AMSOM classification approach. At last, the FKM was used to distinguish the tumor region from the surrounding tissue. The proposed AMSOM-FKM technique and existing methods, i.e., Fuzzy-C-means and K-mean (FMFCM), hybrid self-organization mapping-FKM, were implemented over MATLAB and compared based on comparison parameters, i.e., sensitivity, precision, accuracy, and similarity index values. The proposed technique achieved more than 10% better results than existing methods.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/diagnostic imaging , Algorithms , Cluster Analysis , Machine Learning , Personality
8.
Sensors (Basel) ; 23(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765912

ABSTRACT

Industrial automation systems are undergoing a revolutionary change with the use of Internet-connected operating equipment and the adoption of cutting-edge advanced technology such as AI, IoT, cloud computing, and deep learning within business organizations. These innovative and additional solutions are facilitating Industry 4.0. However, the emergence of these technological advances and the quality solutions that they enable will also introduce unique security challenges whose consequence needs to be identified. This research presents a hybrid intrusion detection model (HIDM) that uses OCNN-LSTM and transfer learning (TL) for Industry 4.0. The proposed model utilizes an optimized CNN by using enhanced parameters of the CNN via the grey wolf optimizer (GWO) method, which fine-tunes the CNN parameters and helps to improve the model's prediction accuracy. The transfer learning model helps to train the model, and it transfers the knowledge to the OCNN-LSTM model. The TL method enhances the training process, acquiring the necessary knowledge from the OCNN-LSTM model and utilizing it in each next cycle, which helps to improve detection accuracy. To measure the performance of the proposed model, we conducted a multi-class classification analysis on various online industrial IDS datasets, i.e., ToN-IoT and UNW-NB15. We have conducted two experiments for these two datasets, and various performance-measuring parameters, i.e., precision, F-measure, recall, accuracy, and detection rate, were calculated for the OCNN-LSTM model with and without TL and also for the CNN and LSTM models. For the ToN-IoT dataset, the OCNN-LSTM with TL model achieved a precision of 92.7%; for the UNW-NB15 dataset, the precision was 94.25%, which is higher than OCNN-LSTM without TL.

9.
Sci Rep ; 13(1): 14605, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669970

ABSTRACT

The patients' vocal Parkinson's disease (PD) changes could be identified early on, allowing for management before physically incapacitating symptoms appear. In this work, static as well as dynamic speech characteristics that are relevant to PD identification are examined. Speech changes or communication issues are among the challenges that Parkinson's individuals may encounter. As a result, avoiding the potential consequences of speech difficulties brought on by the condition depends on getting the appropriate diagnosis early. PD patients' speech signals change significantly from those of healthy individuals. This research presents a hybrid model utilizing improved speech signals with dynamic feature breakdown using CNN and LSTM. The proposed hybrid model employs a new, pre-trained CNN with LSTM to recognize PD in linguistic features utilizing Mel-spectrograms derived from normalized voice signal and dynamic mode decomposition. The proposed Hybrid model works in various phases, which include Noise removal, extraction of Mel-spectrograms, feature extraction using pre-trained CNN model ResNet-50, and the final stage is applied for classification. An experimental analysis was performed using the PC-GITA disease dataset. The proposed hybrid model is compared with traditional NN and well-known machine learning-based CART and SVM & XGBoost models. The accuracy level achieved in Neural Network, CART, SVM, and XGBoost models is 72.69%, 84.21%, 73.51%, and 90.81%. The results show that under these four machine approaches of tenfold cross-validation and dataset splitting without samples overlapping one individual, the proposed hybrid model achieves an accuracy of 93.51%, significantly outperforming traditional ML models utilizing static features in detecting Parkinson's disease.


Subject(s)
Parkinson Disease , Humans , Linguistics , Machine Learning , Neural Networks, Computer , Research Design
10.
Sci Rep ; 13(1): 12473, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528148

ABSTRACT

Hepatitis C Virus (HCV) is a viral infection that causes liver inflammation. Annually, approximately 3.4 million cases of HCV are reported worldwide. A diagnosis of HCV in earlier stages helps to save lives. In the HCV review, the authors used a single ML-based prediction model in the current research, which encounters several issues, i.e., poor accuracy, data imbalance, and overfitting. This research proposed a Hybrid Predictive Model (HPM) based on an improved random forest and support vector machine to overcome existing research limitations. The proposed model improves a random forest method by adding a bootstrapping approach. The existing RF method is enhanced by adding a bootstrapping process, which helps eliminate the tree's minor features iteratively to build a strong forest. It improves the performance of the HPM model. The proposed HPM model utilizes a 'Ranker method' to rank the dataset features and applies an IRF with SVM, selecting higher-ranked feature elements to build the prediction model. This research uses the online HCV dataset from UCI to measure the proposed model's performance. The dataset is highly imbalanced; to deal with this issue, we utilized the synthetic minority over-sampling technique (SMOTE). This research performs two experiments. The first experiment is based on data splitting methods, K-fold cross-validation, and training: testing-based splitting. The proposed method achieved an accuracy of 95.89% for k = 5 and 96.29% for k = 10; for the training and testing-based split, the proposed method achieved 91.24% for 80:20 and 92.39% for 70:30, which is the best compared to the existing SVM, MARS, RF, DT, and BGLM methods. In experiment 2, the analysis is performed using feature selection (with SMOTE and without SMOTE). The proposed method achieves an accuracy of 41.541% without SMOTE and 96.82% with SMOTE-based feature selection, which is better than existing ML methods. The experimental results prove the importance of feature selection to achieve higher accuracy in HCV research.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Random Forest , Support Vector Machine , Algorithms
11.
Curr Med Imaging ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37594157

ABSTRACT

INTRODUCTION: Millions of people have been infected with COVID-19, which has spread quickly worldwide since the start of 2020, resulting in numerous fatalities. Identification of infected individuals is essential to control the spread of the virus. AIM: In this study, we propose a hybrid architecture that combines Convolutional Neural Networks (CNNs) with Recurrent Neural Networks (RNNs) and leverages transfer learning to enhance the accuracy of COVID-19 detection from X-ray images. METHOD: The proposed work utilizes 4 pre-trained CNN architectures, namely, InceptionnetV3, Densenet121, Inception-ResNet V2, and VGG19, to extract high-level features from the input X-ray images. These features are then fed into the second component, an RNN-based network, which captures the temporal dependencies within the extracted features. To evaluate the performance of the proposed architecture, a comprehensive dataset consisting of X-ray images from COVID-19 positive cases, non-COVID-19 pneumonia cases, and healthy individuals is used. Gradient class activation map (Grad-CAM) analysis has been applied to the obtained results to provide heat-map pictures specific to each class and coloured visualizations of the COVID-19-infected areas in CXR images. RESULT: Experimental results demonstrate that the proposed hybrid CNN-RNN architecture achieves promising results in COVID-19 detection from X-ray images. The model exhibits high accuracy, precision, recall, area under the receiver operating characteristics (ROC) curve (AUC), and F1-score, outperforming other state-of-the-art methods. CONCLUSION: The combination of CNNs and RNNs enables the model to effectively capture spatial and temporal information, leading to improved performance in COVID-19 detection. The proposed hybrid architecture with transfer learning from X-ray images provides a robust and efficient solution for COVID-19 detection. The model can potentially assist healthcare professionals in making accurate and timely diagnoses, thereby contributing to the global efforts to combat the COVID-19 pandemic. In the present work, VGG19-RNN architecture outperformed all other networks in terms of accuracy. The most effective training and validation accuracy for the VGG19-RNN architecture is 99% & 97.70%, respectively, and the loss was 0.02 & 0.09 at epoch 100.

12.
Sensors (Basel) ; 22(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015744

ABSTRACT

Due to the rapid growth in IT technology, digital data have increased availability, creating novel security threats that need immediate attention. An intrusion detection system (IDS) is the most promising solution for preventing malicious intrusions and tracing suspicious network behavioral patterns. Machine learning (ML) methods are widely used in IDS. Due to a limited training dataset, an ML-based IDS generates a higher false detection ratio and encounters data imbalance issues. To deal with the data-imbalance issue, this research develops an efficient hybrid network-based IDS model (HNIDS), which is utilized using the enhanced genetic algorithm and particle swarm optimization(EGA-PSO) and improved random forest (IRF) methods. In the initial phase, the proposed HNIDS utilizes hybrid EGA-PSO methods to enhance the minor data samples and thus produce a balanced data set to learn the sample attributes of small samples more accurately. In the proposed HNIDS, a PSO method improves the vector. GA is enhanced by adding a multi-objective function, which selects the best features and achieves improved fitness outcomes to explore the essential features and helps minimize dimensions, enhance the true positive rate (TPR), and lower the false positive rate (FPR). In the next phase, an IRF eliminates the less significant attributes, incorporates a list of decision trees across each iterative process, supervises the classifier's performance, and prevents overfitting issues. The performance of the proposed method and existing ML methods are tested using the benchmark datasets NSL-KDD. The experimental findings demonstrated that the proposed HNIDS method achieves an accuracy of 98.979% on BCC and 88.149% on MCC for the NSL-KDD dataset, which is far better than the other ML methods i.e., SVM, RF, LR, NB, LDA, and CART.


Subject(s)
Algorithms , Support Vector Machine , Machine Learning
13.
Comput Math Methods Med ; 2022: 4688327, 2022.
Article in English | MEDLINE | ID: mdl-35572826

ABSTRACT

Cervical cancer has become the third most common form of cancer in the in-universe, after the widespread breast cancer. Human papillomavirus risk of infection is linked to the majority of cancer cases. Preventive care, the most expensive way of fighting cancer, can protect about 37% of cancer cases. The Pap smear examination is a standard screening procedure for the initial screening of cervical cancer. However, this manual test procedure generates many false-positive outcomes due to individual errors. Various researchers have extensively investigated machine learning (ML) methods for classifying cervical Pap cells to enhance manual testing. The random forest method is the most popular method for anticipating features from a high-dimensional cancer image dataset. However, the random forest method can get too slow and inefficient for real-time forecasts when too many decision trees are used. This research proposed an efficient feature selection and prediction model for cervical cancer datasets using Boruta analysis and SVM method to deal with this challenge. A Boruta analysis method is used. It is improved from of random forest method and mainly discovers feature subsets from the data source that are significant to assigned classification activity. The proposed model's primary aim is to determine the importance of cervical cancer screening factors for classifying high-risk patients depending on the findings. This research work analyses cervical cancer and various risk factors to help detect cervical cancer. The proposed model Boruta with SVM and various popular ML models are implemented using Python and various performance measuring parameters, i.e., accuracy, precision, F1-Score, and recall. However, the proposed Boruta analysis with SVM performs outstanding over existing methods.


Subject(s)
Uterine Cervical Neoplasms , Early Detection of Cancer , Female , Humans , Machine Learning , Risk Factors , Uterine Cervical Neoplasms/diagnosis , Vaginal Smears
14.
Sensors (Basel) ; 22(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458892

ABSTRACT

The rapid growth in the number of vehicles has led to traffic congestion, pollution, and delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving the universe towards automated processes and intelligent management systems. This is a critical contribution to automation and smart civilizations. Effective and reliable congestion management and traffic control help save many precious resources. An IoT-based ITM system set of sensors is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data. Machine learning (ML) is another technique to improve the transport system. The existing transport-management solutions encounter several challenges resulting in traffic congestion, delay, and a high fatality rate. This research work presents the design and implementation of an Adaptive Traffic-management system (ATM) based on ML and IoT. The design of the proposed system is based on three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to cover all the possible issues of the transport system. The proposed ATM system also utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed ATM model constantly updates traffic signal schedules depending on traffic volume and estimated movements from nearby crossings. It significantly lowers traveling time by gradually moving automobiles across green signals and decreases traffic congestion by generating a better transition. The experiment outcomes reveal that the proposed ATM system significantly outperformed the conventional traffic-management strategy and will be a frontrunner for transportation planning in smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times and congestion, reduces road accidents, and improves the overall journey experience.


Subject(s)
Automobiles , Machine Learning , Accidents , Cities , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL
...