Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 3(1): pgad451, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222467

ABSTRACT

Dense suspensions exhibit the remarkable ability to switch dynamically and reversibly from a fluid-like to a solid-like, shear-jammed (SJ) state. Here, we show how this transition has important implications for the propensity for forming fractures. We inject air into bulk dense cornstarch suspensions and visualize the air invasion into the opaque material using time-resolved X-ray radiography. For suspensions with cornstarch mass fractions high enough to exhibit discontinuous shear thickening and shear jamming, we show that air injection leads to fractures in the material. For high mass fractions, these fractures grow quasistatically as rough cavities with fractured interfaces. For lower mass fractions, remarkably, the fractures can relax to smooth bubbles that then rise under buoyancy. We show that the onset of the relaxation occurs as the shear rate induced by the air cavity growth decreases below the critical shear rate denoting the onset of discontinuous shear thickening, which reveals a structural signature of the SJ state.

2.
Langmuir ; 38(24): 7442-7447, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35605177

ABSTRACT

The drying of sessile drops of aqueous colloidal suspensions leads to the formation of a close-packed particle deposit. As water evaporates, a solidification front propagates from the edge of the drop toward the center, leaving behind a thin disk-shaped deposit. For drops with sufficiently large particle volume fractions, the deposit eventually covers the entire wetted area. In this regime, the dynamics of the deposit growth is governed by volume conservation across a large range of particle volume fractions and drying times. During drying, water flows radially through the deposit to compensate for evaporation over the solid's surface, creating a negative pore pressure in the deposit which we rationalize with a hydrodynamic model. We show that the pressure inside the deposit controls both the onset of crack formation and the onset of air invasion. Two distinct regimes of air invasion occur, which we can account for using the same model that further provides a quantitative criterion for the crossover between the two regimes.

3.
Soft Matter ; 17(39): 8832-8837, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34546264

ABSTRACT

A drop of an aqueous suspension of nanoparticles placed on a substrate forms a solid deposit as it dries. For dilute suspensions, particles accumulate within a narrow ring at the drop edge, whereas a uniform coating covering the entire wetted area forms for concentrated suspensions. In between these extremes, we report two additional regimes characterized by non-uniform deposit thicknesses and by distinct crack morphologies. We show that both the deposit shape and the number of cracks are controlled exclusively by the initial particle volume fraction. The different regimes share a common avalanche-like crack propagation dynamics, as a result of the delamination of the deposit from the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...