Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(10): 2547-2565, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38017677

ABSTRACT

Particles are a concern regarding tunneling wastewater, but gaps remain in understanding metal(loid)s content and coagulation efficiency. In this research, characterization of the wastewaters before and after treatment was investigated by chemical analysis and various techniques for particle characterization. Then, laboratory work was conducted to evaluate effectiveness of sedimentation and use of coagulants to remove particles and particle-associated contaminants. Both natural (chitosan) and chemical coagulants (ferric chloride sulfates and polyaluminium chloride solution), were applied in a jar test system. The results indicated that short-time sedimentation alone substantially reduced the particle content and particle-associated pollutants, including metal(loid)s, while subsequent chemical coagulation was required to comply with discharge limits. The optimum dosages of chitosan, PIX, and PAX for water 1 after pre-treatment (15 min sedimentation) were 1 mg/L, 3 mg Fe/L, and 3 mg Al/L, respectively, while a dosage of 2 mg Al/L gave the best results in water 3. Furthermore, chemical coagulation significantly decreased the volume density of particles in the diameter range of 1-100 µm, showing that coagulants are efficient for the removal of smaller particles not removed by conventional sedimentation.


Subject(s)
Chitosan , Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Wastewater , Water Pollutants, Chemical/chemistry , Environmental Pollutants/analysis , Water/analysis , Water Purification/methods , Flocculation
2.
Water Sci Technol ; 81(1): 81-90, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32293591

ABSTRACT

The aim of this work was to develop a method that allows the recovery of nutrients from aquaculture sludge, not only to alleviate the disposal problem, but also to address the future scarcity of non-renewable fertilizers. This method includes two steps: Nutrient mobilization using aerobic digestion followed by solids precipitation using chitosan as the flocculant. The aerobic digestion experiments were conducted in aerated batch reactors, while a jar test apparatus was used to assess the capacity of chitosan to remove total suspended solids (TSS) and turbidity. During aerobic digestion, the concentration of soluble N (sum of NH4-N, NO2-N, NO3-N) increased from 181 mg/L at the start to 890 mg/L after three weeks, and to 903 mg/L after four weeks and solids removal by chitosan flocculation. The corresponding concentrations for soluble P were 8.2 mg/L at start, 110 mg/L after three weeks of aerobic digestion, and 160 mg/L after four weeks of aerobic digestion and chitosan flocculation. Other macronutrients (K, Ca, Mg, S) and micronutrients (Fe, Mn, Zn, B, Cu, Mo) were mobilized to concentrations close to or higher than levels recommended for hydroponic growth of vegetables. Chitosan flocculation and precipitation using a dose of 15 mg/L resulted in a reduction of the turbidity by 96% from 156 to 6.5 FNU. After chitosan precipitation, 80% of the sludge could be reclaimed as a nutrient-rich clear phase, low in TSS and turbidity.


Subject(s)
Sewage , Waste Disposal, Fluid , Aquaculture , Flocculation , Nutrients
3.
Mar Pollut Bull ; 73(1): 24-36, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23816308

ABSTRACT

Since 2005, five different ballast water management systems (BWMSs) based on chlorination treatment have been tested by Norwegian Institute for Water Research (NIVA) according to guidelines from the International Maritime Organization (IMO). 25% and >50% of all the tested discharge samples exhibited acute and chronic toxic effects on algae, respectively. In most cases this toxicity was plausibly caused by a high free residual oxidant (FRO) level (>0.08 mg Cl/l). Of the 22 disinfection by-products (DBPs) that were identified in treated water at discharge, four compounds were at times found at concentrations that may pose a risk to the local aquatic environment. However, there seemed to be no clear indication that the measured DBP concentrations contributed to the observed algal toxicity. The addition of methylcellulose instead of lignin in the test water to comply with IMO requirements seemed to limit the formation of DBP.


Subject(s)
Disinfectants/toxicity , Disinfection/methods , Seawater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Animals , Disinfectants/analysis , Oxidation-Reduction , Risk Assessment , Ships , Toxicity Tests , Water Pollutants, Chemical/analysis
4.
Mar Environ Res ; 83: 10-5, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23127287

ABSTRACT

In laboratory experiments we added Vibrio cholerae and Vibrio parahaemolyticus to bottles with seawater previously treated by filtration, UV, chlorine or ozone. The purpose was to investigate the influence of different treatment techniques on the growth potential of these bacteria in simulated ballast water tanks. Residual oxidants were removed before inoculation, and the bottles were incubated at 21 ± 1 °C. The growth potential of the vibrios was investigated in two different experimental setups, i.e. in presence and absence of added natural microorganisms. In general, V. cholerae and V. parahaemolyticus rapidly lost their culturability after inoculation and storage in untreated seawater, but showed increased survival or growth in the treated water. Highest growth was observed in water previously exposed to high concentrations of ozone. Addition of natural microorganisms reduced the growth of V. cholerae and V. parahaemolyticus.


Subject(s)
Seawater/microbiology , Vibrio cholerae/growth & development , Vibrio parahaemolyticus/growth & development , Water Purification/methods , Chlorine/chemistry , Filtration , Microbial Viability , Ozone/chemistry , Time Factors , Ultraviolet Rays , Water Purification/standards
5.
Water Sci Technol ; 61(12): 3188-97, 2010.
Article in English | MEDLINE | ID: mdl-20555216

ABSTRACT

We present an assessment of xenobiotic organic micro-pollutants (XOM) occurrence and removal of polycyclic aromatic hydrocarbons (PAHs) in a novel biofilm system combined with ozonation, the BIOZO concept, treating partly stabilised landfill leachate. A novel, staged moving-bed biofilm reactor (SMBBR) design was implemented in laboratory- and pilot-scale, and the PAHs removal efficiency of controlled ozonation was assessed installing the ozonation step in the nitrate recirculation line (Position 1) or between the pre-anoxic and aerobic zones (Position 2). COD removal in a laboratory- and in a pilot-scale SMBBR system with and without ozonation is additionally addressed. Results obtained in a screening study (GC-ToF-MS) were used to compile a priority list of XOMs in leachate based on relative occurrence, showing PAHs as the predominant fraction. Biological treatment is shown to be an effective means to remove PAHs detected in the aqueous phase. PAH removal takes in most part place in the pre-anoxic zone, thereby decreasing toxicity exhibited by PAH on autotrophic nitrifier bacteria in the aerobic zone. Ozonation installed in Position 2 is shown to be superior over Position I in terms of COD, PAH and nitrogen removal efficiencies. We additionally demonstrate the potential of intermittent sludge ozonation as a means to decrease PAH concentrations in sludge wasted and to improve nitrogen removal in the BIOZO system.


Subject(s)
Biofilms , Nitrogen/isolation & purification , Ozone , Polycyclic Aromatic Hydrocarbons/isolation & purification , Water Pollutants, Chemical/isolation & purification , Bioreactors , Chromatography, Gas , Equipment Design , Humans , Mass Spectrometry , Mutagens/isolation & purification , Pilot Projects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
6.
Sci Total Environ ; 408(8): 1915-24, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20156636

ABSTRACT

We present an assessment of the dynamics in the influent concentration of hormones (estrone, estriol) and antibiotics (trimethoprim, sulfamethoxazole, tetracycline, ciprofloxacin) in the liquid phase including the efficiency of biological municipal wastewater treatment. The concentration of estradiol, 17-alpha-ethinylestradiol, doxycycline, oxytetracycline, demeclocycline, chlortetracycline, cefuroxime, cyclophosphamide, and ifosfamide were below the limit of detection in all of the sewage samples collected within this study. Two different types of diurnal variation pattern were identified in the influent mass loads of selected antibiotics and hormones that effectively correlate with daily drug administration patterns and with the expected maximum human hormone release, respectively. The occurrence of natural hormones and antimicrobials, administered every 12 hours, shows a daily trend of decreasing contaminant mass load, having the maximum values in the morning hours. The occurrence of antibiotics, typically administered every 8 hours, indicates a daily peak value in samples collected under the highest hydraulic loading. The efficiency of biological removal of both hormones and antibiotics is shown to be limited. Compared to the values obtained in the influent samples, increased concentrations are observed in the biologically treated effluent for trimethoprim, sulfamethoxazole and ciprofloxacin, mainly as a result of deconjugation processes. Ciprofloxacin is shown as the predominant antimicrobial compound in the effluent, and it is present at quantities approximately 10 fold greater than the total mass of the other of the compounds due to poor removal efficiency and alternating solid-liquid partitioning behaviour. Our results suggest that, to increase the micro-pollutant removal and the chemical dosing efficiency in enhanced tertiary treatment, significant benefits can be derived from the optimisation of reactor design and the development of control schemes that accounts for diurnal secondary effluent micro-pollutant and hydraulic loading patterns.


Subject(s)
Anti-Bacterial Agents/metabolism , Circadian Rhythm , Hormones/metabolism , Sewage/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Bioreactors , Biotransformation , Cities , Humans , Norway , Sewage/chemistry
7.
Water Sci Technol ; 60(2): 533-41, 2009.
Article in English | MEDLINE | ID: mdl-19633397

ABSTRACT

We present an investigation on climate change effects on a wastewater treatment system that receive sewage collected in a combined sewer system in Oslo, Norway, during winter operation. Results obtained, by contrasting meteorological data with sewage data, show that wastewater treatment plant (WWTP) influent flow rates are significantly increased during temporary snow melting periods above a critical daily air mean temperature of approx. -1.5 degrees C degree (T(Crit)) identified in the area. In order to assess melting patterns, the number of days above and below T(Crit) was assessed, and the annual number of melting periods was additionally evaluated using meteorological data obtained in the last decade. A striking thing about the daily air temperature pattern is that, despite the progressively warmer winter temperatures in the last decade, an increasing number of days with temperatures below -1.5 degrees C could be observed. The frequency of melting periods is shown to increase in wintertime, and it is identified as an additional climate change related factor in the Oslo region. We demonstrate that these impacts can deteriorate the WWTP operation through progressively increasing the relative frequencies of very high influent flow rate and of the very low influent sewage temperature. Such climate change related effects on sewage treatment processes can be characterised as shock-conditions, i.e. significant changes in a system's boundary conditions, occurring in a relatively short period of time. In the six year period examined, biological nitrogen removal and secondary clarification processes are shown to be significantly affected by the climate factors. A striking thing about using the state-of-the-art mathematical models of wastewater treatment processes in decision support systems is their inability of describing, and thus predicting the effects of such shock-loading events, as they have not been studied so far. Adaptation and optimisation of process models, also for use in design, optimisation as well as in real-time automation and process control schemes, are thus critical to meet the challenges of climatic changes in the future.


Subject(s)
Sewage , Water Pollutants, Chemical/analysis , Water Purification/methods , Climate , Computer Simulation , Greenhouse Effect , Models, Theoretical , Nitrogen/analysis , Nitrogen/isolation & purification , Norway , Temperature , Time Factors , Waste Disposal, Fluid/methods , Water Movements
8.
Water Res ; 40(19): 3559-70, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16996560

ABSTRACT

In Norway the combined hydraulic capacity of all domestic wastewater treatment plants is relatively equally distributed between three major treatment plant types; mechanical, chemical, and combined chemical and biological. The Western coast from Lindesnes in the south to the Russian boarder in the North is dominated by mechanical treatment plants, constituting approximately 68% of the treatment capacity in that area. In the present study we report concentrations and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs), nonylphenols, phthalates, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) found in five Norwegian wastewater treatment plants (WWTPs) applying different levels of treatment. Concentrations of organic micropollutants in the influents to the WWTPs were generally in the low range of what have been reported by others for domestic wastewater in Europe and North-America. More than 90% removal could be obtained for nonylphenols, PBDEs, and the more hydrophobic 4-6 ring PAHs by chemical precipitation, however, biological treatment appeared to be necessary for efficient removal of the less lipophilic 2 and 3 ring PAHs, the medium- to short-chained nonylphenol ethoxylates and diethyl phthalate. SigmaPCB(7) was removed by more than 90% by combined biological/chemical treatment, while removal efficiency by chemical treatment was not possible to estimate due to low inlet concentrations. Low or insignificant removals of PAHs, phthalates and nonylphenols with their ethoxylates were observed at the mechanical WWTP, which was in accordance with the minuscule removal of TOC.


Subject(s)
Combinatorial Chemistry Techniques/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Ethers/analysis , Norway , Phthalic Acids/analysis , Polybrominated Biphenyls/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sewage/chemistry , Sewage/microbiology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...