Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Elife ; 92020 03 31.
Article in English | MEDLINE | ID: mdl-32228858

ABSTRACT

The brains of Alzheimer's disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-ß plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-ß plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer's disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-ß peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-ß oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-ß peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-ß oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-ß were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-ß oligomerization from Amyloid-ß expression alone. The physical damage caused by Amyloid-ß oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-ß oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


Alzheimer's disease is a progressive condition that damages the brain over time. The cause is not clear, but a toxic molecule called Amyloid-ß peptide seems to play a part. It builds up in the brains of people with Alzheimer's disease, forming hard clumps called plaques. Yet, though the plaques are a hallmark of the disease, experimental treatments designed to break them down do not seem to help. This raises the question ­ do Amyloid-ß plaques actually cause Alzheimer's disease? Answering this question is not easy. One way to study the effect of amyloid plaques is to inject clumps of Amyloid-ß peptides into model organisms. This triggers Alzheimer's-like brain damage, but it is not clear why. It remains difficult to tell the difference between the damage caused by the injected Amyloid-ß peptides and the damage caused by the solid plaques that they form. For this, researchers need a way to trigger plaque formation directly inside animal brains. This would make it possible to test the effects of plaque-targeting treatments, like the drug lithium. Optogenetics is a technique that uses light to control molecules in living animals. Hsien, Kaur et al. have now used this approach to trigger plaque formation by fusing light-sensitive proteins to Amyloid-ß peptides in worms, fruit flies and zebrafish. This meant that the peptides clumped together to form plaques whenever the animals were exposed to blue light. This revealed that, while both the Amyloid-ß peptides and the plaques caused damage, the plaques were much more toxic. They damaged cell metabolism and caused tissue loss that resembled late Alzheimer's disease in humans. To find out whether it was possible to test Alzheimer's treatments in these animals, Hsien, Kaur et al. treated them with the drug, lithium. This increased their lifespan, reversing some of the damage caused by the plaques. Alzheimer's disease affects more than 46.8 million people worldwide and is the sixth leading cause of death in the USA. But, despite over 50 years of research, there is no cure. This new plaque-formation technique allows researchers to study the effects of amyloid plaques in living animals, providing a new way to test Alzheimer's treatments. This could be of particular help in studies of experimental drugs that aim to reduce plaque formation.


Subject(s)
Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Brain/physiopathology , Light , Optogenetics/methods , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Animals , Brain/radiation effects , Caenorhabditis elegans , Disease Progression , Drosophila , Female , HEK293 Cells , Humans , Lithium/administration & dosage , Male , Neurodegenerative Diseases , Plaque, Amyloid , Zebrafish
4.
J Dev Biol ; 6(1)2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29615550

ABSTRACT

Modeling human disease in animals is an important strategy to discover potential methods of intervention. We suggest that there is much to be gained by employing a multi-model approach that takes advantage of different animal systems used in the laboratory simultaneously. We use the example of modeling Alzheimer's disease in Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio to illustrate how such an approach can be employed to investigate the pathophysiology of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...