Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 20(5): e1011251, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768217

ABSTRACT

Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Transgenic Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.

2.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38309276

ABSTRACT

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Subject(s)
Polyadenylation , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , 3' Untranslated Regions/genetics , Gene Expression Regulation , Introns
3.
Mol Cells ; 46(6): 374-386, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37077029

ABSTRACT

Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.


Subject(s)
Heat-Shock Response , Proteostasis , Humans , Reactive Oxygen Species/metabolism , Heat-Shock Response/genetics , HSP70 Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Nuclear Proteins/metabolism , Genomic Instability
4.
J Neurogenet ; 37(1-2): 36-46, 2023.
Article in English | MEDLINE | ID: mdl-36457164

ABSTRACT

Circadian rhythms and sleep homeostasis constitute the two-process model for daily sleep regulation. However, evidence for circadian control of sleep-wake cycles has been relatively short since clock-less animals often show sleep behaviors quantitatively comparable to wild-type. Here we examine Drosophila sleep behaviors under different light-dark regimes and demonstrate that circadian clocks gate light-induced arousal. Genetic excitation of tyrosine decarboxylase 2 (TDC2)-expressing neurons suppressed sleep more evidently at night, causing nocturnal activity. The arousal effects were likely mediated in part by glutamate transmission from the octopaminergic neurons and substantially masked by light. Application of T12 cycles (6-h light: 6-h dark) further showed that the light-sensitive effects of TDC2 neurons depended on the time of the day. In particular, light-sensing via visual input pathway led to strong sleep suppression at subjective night, and such an effect disappeared in clock-less mutants. Transgenic mapping revealed that light-induced arousal and free-running behavioral rhythms require distinct groups of circadian pacemaker neurons. These results provide convincing evidence that circadian control of sleep is mediated by the dedicated clock neurons for light-induced arousal.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/physiology , Sleep/physiology , Circadian Rhythm/physiology , Animals, Genetically Modified , Arousal/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology
5.
BMC Biol ; 20(1): 12, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996455

ABSTRACT

BACKGROUND: The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. RESULTS: We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. CONCLUSION: We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.


Subject(s)
Axons , Brain-Derived Neurotrophic Factor , Brain-Derived Neurotrophic Factor/metabolism , Neurons/physiology , Peptide Initiation Factors/metabolism , Protein Biosynthesis
6.
Nucleic Acids Res ; 49(21): 12517-12534, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850140

ABSTRACT

The pioneer (or first) round of translation of newly synthesized mRNAs is largely mediated by a nuclear cap-binding complex (CBC). In a transcriptome-wide analysis of polysome-associated and CBC-bound transcripts, we identify RN7SL1, a noncoding RNA component of a signal recognition particle (SRP), as an interaction partner of the CBC. The direct CBC-SRP interaction safeguards against abnormal expression of polypeptides from a ribosome-nascent chain complex (RNC)-SRP complex until the latter is properly delivered to the endoplasmic reticulum. Failure of this surveillance causes abnormal expression of misfolded proteins at inappropriate intracellular locations, leading to a cytosolic stress response. This surveillance pathway also blocks protein synthesis through RNC-SRP misassembled on an mRNA encoding a mitochondrial protein. Thus, our results reveal a surveillance pathway in which pioneer translation ensures proper targeting of endoplasmic reticulum and mitochondrial proteins.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Signal Recognition Particle/metabolism , HEK293 Cells , HeLa Cells , Humans , Mitochondrial Proteins/genetics , Models, Genetic , Nuclear Cap-Binding Protein Complex/genetics , Nuclear Cap-Binding Protein Complex/metabolism , Polyribosomes/genetics , Polyribosomes/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Signal Recognition Particle/genetics , Signal Transduction/genetics
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34799448

ABSTRACT

Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.


Subject(s)
Circadian Clocks/physiology , Drosophila Proteins/metabolism , Neuropeptides/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Neurons/metabolism , Neuropeptides/genetics , Proteomics , Sleep
8.
PLoS Genet ; 17(10): e1009871, 2021 10.
Article in English | MEDLINE | ID: mdl-34714823

ABSTRACT

Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I'm not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused "bang-induced" seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.


Subject(s)
Citric Acid Cycle/physiology , Glutamic Acid/metabolism , Seizures/metabolism , Animals , Citric Acid/metabolism , Citric Acid Cycle/genetics , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glutamic Acid/genetics , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Mutation/genetics , Neurons/metabolism , Seizures/genetics , Symporters/genetics , Symporters/metabolism
9.
Nucleic Acids Res ; 49(19): 11294-11311, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34551427

ABSTRACT

C9ORF72-derived dipeptide repeat proteins have emerged as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). However, the mechanisms underlying their expression are not fully understood. Here, we demonstrate that ZNF598, the rate-limiting factor for ribosome-associated quality control (RQC), co-translationally titrates the expression of C9ORF72-derived poly(GR) protein. A Drosophila genetic screen identified key RQC factors as potent modifiers of poly(GR)-induced neurodegeneration. ZNF598 overexpression in human neuroblastoma cells inhibited the nuclear accumulation of poly(GR) protein and decreased its cytotoxicity, whereas ZNF598 deletion had opposing effects. Poly(GR)-encoding sequences in the reporter RNAs caused translational stalling and generated ribosome-associated translation products, sharing molecular signatures with canonical RQC substrates. Furthermore, ZNF598 and listerin 1, the RQC E3 ubiquitin-protein ligase, promoted poly(GR) degradation via the ubiquitin-proteasome pathway. An ALS-relevant ZNF598R69C mutant displayed loss-of-function effects on poly(GR) expression, as well as on general RQC. Moreover, RQC function was impaired in C9-ALS patient-derived neurons, whereas lentiviral overexpression of ZNF598 lowered their poly(GR) expression and suppressed proapoptotic caspase-3 activation. Taken together, we propose that an adaptive nature of the RQC-relevant ZNF598 activity allows the co-translational surveillance to cope with the atypical expression of pathogenic poly(GR) protein, thereby acquiring a neuroprotective function in C9-ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Carrier Proteins/genetics , Drosophila melanogaster/genetics , Frontotemporal Dementia/genetics , Protein Biosynthesis , Ubiquitin-Protein Ligases/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/deficiency , Carrier Proteins/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Dipeptides/genetics , Dipeptides/metabolism , Disease Models, Animal , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Female , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression Regulation , Gene Knockout Techniques , Humans , Male , Neurons/metabolism , Neurons/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , Ubiquitin-Protein Ligases/deficiency
10.
BMB Rep ; 54(9): 439-450, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34488933

ABSTRACT

Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities. [BMB Reports 2021; 54(9): 439-450].


Subject(s)
Neurons/physiology , Proteostasis/physiology , Ribosomes/metabolism , Stress, Physiological , Humans , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Protein Biosynthesis , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
11.
PLoS Biol ; 18(12): e3001002, 2020 12.
Article in English | MEDLINE | ID: mdl-33362237

ABSTRACT

Nucleocytoplasmic transport (NCT) defects have been implicated in neurodegenerative diseases such as C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we identify a neuroprotective pathway of like-Sm protein 12 (LSM12) and exchange protein directly activated by cyclic AMP 1 (EPAC1) that sustains the nucleocytoplasmic RAN gradient and thereby suppresses NCT dysfunction by the C9ORF72-derived poly(glycine-arginine) protein. LSM12 depletion in human neuroblastoma cells aggravated poly(GR)-induced impairment of NCT and nuclear integrity while promoting the nuclear accumulation of poly(GR) granules. In fact, LSM12 posttranscriptionally up-regulated EPAC1 expression, whereas EPAC1 overexpression rescued the RAN gradient and NCT defects in LSM12-deleted cells. C9-ALS patient-derived neurons differentiated from induced pluripotent stem cells (C9-ALS iPSNs) displayed low expression of LSM12 and EPAC1. Lentiviral overexpression of LSM12 or EPAC1 indeed restored the RAN gradient, mitigated the pathogenic mislocalization of TDP-43, and suppressed caspase-3 activation for apoptosis in C9-ALS iPSNs. EPAC1 depletion biochemically dissociated RAN-importin ß1 from the cytoplasmic nuclear pore complex, thereby dissipating the nucleocytoplasmic RAN gradient essential for NCT. These findings define the LSM12-EPAC1 pathway as an important suppressor of the NCT-related pathologies in C9-ALS/FTD.


Subject(s)
Circadian Rhythm Signaling Peptides and Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cell Nucleus/metabolism , Circadian Rhythm Signaling Peptides and Proteins/genetics , Cyclic AMP/metabolism , Cytoplasm/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Guanine Nucleotide Exchange Factors/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/pathology , Nuclear Pore/metabolism , Nucleocytoplasmic Transport Proteins/genetics
12.
Sci Adv ; 6(41)2020 10.
Article in English | MEDLINE | ID: mdl-33028524

ABSTRACT

Sleep behaviors are observed even in nematodes and arthropods, yet little is known about how sleep-regulatory mechanisms have emerged during evolution. Here, we report a sleep-like state in the cnidarian Hydra vulgaris with a primitive nervous organization. Hydra sleep was shaped by homeostasis and necessary for cell proliferation, but it lacked free-running circadian rhythms. Instead, we detected 4-hour rhythms that might be generated by ultradian oscillators underlying Hydra sleep. Microarray analysis in sleep-deprived Hydra revealed sleep-dependent expression of 212 genes, including cGMP-dependent protein kinase 1 (PRKG1) and ornithine aminotransferase. Sleep-promoting effects of melatonin, GABA, and PRKG1 were conserved in Hydra However, arousing dopamine unexpectedly induced Hydra sleep. Opposing effects of ornithine metabolism on sleep were also evident between Hydra and Drosophila, suggesting the evolutionary switch of their sleep-regulatory functions. Thus, sleep-relevant physiology and sleep-regulatory components may have already been acquired at molecular levels in a brain-less metazoan phylum and reprogrammed accordingly.

13.
Commun Biol ; 3(1): 174, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32296133

ABSTRACT

Genes and neural circuits coordinately regulate animal sleep. However, it remains elusive how these endogenous factors shape sleep upon environmental changes. Here, we demonstrate that Shaker (Sh)-expressing GABAergic neurons projecting onto dorsal fan-shaped body (dFSB) regulate temperature-adaptive sleep behaviors in Drosophila. Loss of Sh function suppressed sleep at low temperature whereas light and high temperature cooperatively gated Sh effects on sleep. Sh depletion in GABAergic neurons partially phenocopied Sh mutants. Furthermore, the ionotropic GABA receptor, Resistant to dieldrin (Rdl), in dFSB neurons acted downstream of Sh and antagonized its sleep-promoting effects. In fact, Rdl inhibited the intracellular cAMP signaling of constitutively active dopaminergic synapses onto dFSB at low temperature. High temperature silenced GABAergic synapses onto dFSB, thereby potentiating the wake-promoting dopamine transmission. We propose that temperature-dependent switching between these two synaptic transmission modalities may adaptively tune the neural property of dFSB neurons to temperature shifts and reorganize sleep architecture for animal fitness.


Subject(s)
Behavior, Animal , Brain/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GABAergic Neurons/metabolism , Shaker Superfamily of Potassium Channels/metabolism , Sleep , Synaptic Transmission , Thermosensing , Activity Cycles , Animals , Animals, Genetically Modified , Circadian Rhythm , Dopaminergic Neurons/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Light , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Shaker Superfamily of Potassium Channels/genetics , Time Factors
14.
Mol Cell Biol ; 40(6)2020 02 27.
Article in English | MEDLINE | ID: mdl-31907279

ABSTRACT

Circadian gene expression is defined by the gene-specific phase and amplitude of daily oscillations in mRNA and protein levels. D site-binding protein mRNA (Dbp mRNA) shows high-amplitude oscillation; however, the underlying mechanism remains elusive. Here, we demonstrate that heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator that activates Dbp transcription via the poly(C) motif within its proximal promoter. Biochemical analyses identified hnRNP K as a specific protein that directly associates with the poly(C) motif in vitro Interestingly, we further confirmed the rhythmic binding of endogenous hnRNP K within the Dbp promoter through chromatin immunoprecipitation as well as the cycling expression of hnRNP K. Finally, knockdown of hnRNP K decreased mRNA oscillation in both Dbp and Dbp-dependent clock genes. Taken together, our results show rhythmic protein expression of hnRNP K and provide new insights into its function as a transcriptional amplifier of Dbp.


Subject(s)
Circadian Rhythm/genetics , DNA-Binding Proteins/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcriptional Activation/genetics , 3T3 Cells , Animals , Cell Line , HEK293 Cells , Humans , Mice , Poly C/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics
15.
PLoS Genet ; 15(10): e1008356, 2019 10.
Article in English | MEDLINE | ID: mdl-31593562

ABSTRACT

Disrupted circadian rhythms is a prominent and early feature of neurodegenerative diseases including Huntington's disease (HD). In HD patients and animal models, striatal and hypothalamic neurons expressing molecular circadian clocks are targets of mutant Huntingtin (mHtt) pathogenicity. Yet how mHtt disrupts circadian rhythms remains unclear. In a genetic screen for modifiers of mHtt effects on circadian behavior in Drosophila, we discovered a role for the neurodegenerative disease gene Ataxin2 (Atx2). Genetic manipulations of Atx2 modify the impact of mHtt on circadian behavior as well as mHtt aggregation and demonstrate a role for Atx2 in promoting mHtt aggregation as well as mHtt-mediated neuronal dysfunction. RNAi knockdown of the Fragile X mental retardation gene, dfmr1, an Atx2 partner, also partially suppresses mHtt effects and Atx2 effects depend on dfmr1. Atx2 knockdown reduces the cAMP response binding protein A (CrebA) transcript at dawn. CrebA transcript level shows a prominent diurnal regulation in clock neurons. Loss of CrebA also partially suppresses mHtt effects on behavior and cell loss and restoration of CrebA can suppress Atx2 effects. Our results indicate a prominent role of Atx2 in mediating mHtt pathology, specifically via its regulation of CrebA, defining a novel molecular pathway in HD pathogenesis.


Subject(s)
Ataxin-2/genetics , Circadian Clocks/genetics , Cyclic AMP Response Element-Binding Protein A/genetics , Drosophila Proteins/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Animals , Circadian Rhythm/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Fragile X Mental Retardation Protein/genetics , Humans , Huntington Disease/pathology , Mutant Proteins/genetics , Neurons/metabolism , Signal Transduction/genetics
16.
Elife ; 82019 07 17.
Article in English | MEDLINE | ID: mdl-31313987

ABSTRACT

Emerging evidence indicates the role of amino acid metabolism in sleep regulation. Here we demonstrate sleep-promoting effects of dietary threonine (SPET) in Drosophila. Dietary threonine markedly increased daily sleep amount and decreased the latency to sleep onset in a dose-dependent manner. High levels of synaptic GABA or pharmacological activation of metabotropic GABA receptors (GABAB-R) suppressed SPET. By contrast, synaptic blockade of GABAergic neurons or transgenic depletion of GABAB-R in the ellipsoid body R2 neurons enhanced sleep drive non-additively with SPET. Dietary threonine reduced GABA levels, weakened metabotropic GABA responses in R2 neurons, and ameliorated memory deficits in plasticity mutants. Moreover, genetic elevation of neuronal threonine levels was sufficient for facilitating sleep onset. Taken together, these data define threonine as a physiologically relevant, sleep-promoting molecule that may intimately link neuronal metabolism of amino acids to GABAergic control of sleep drive via the neuronal substrate of sleep homeostasis. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Drosophila/physiology , GABAergic Neurons/metabolism , Sleep Aids, Pharmaceutical/administration & dosage , Sleep , Threonine/administration & dosage , Animal Feed , Animals , Drosophila/drug effects , gamma-Aminobutyric Acid/metabolism
17.
Mol Cells ; 42(4): 301-312, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31091556

ABSTRACT

Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.


Subject(s)
Circadian Clocks , Cyclic AMP Response Element-Binding Protein/metabolism , Drosophila Proteins/metabolism , Drosophila/genetics , Mutation , Nonsense Mediated mRNA Decay , Trans-Activators/metabolism , Animals , Animals, Genetically Modified , CLOCK Proteins/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Neurons/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Processing, Post-Transcriptional , Signal Transduction
18.
Wiley Interdiscip Rev RNA ; 9(6): e1488, 2018 11.
Article in English | MEDLINE | ID: mdl-29869836

ABSTRACT

Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Subject(s)
Ataxin-2/physiology , Animals , Ataxin-2/chemistry , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , RNA/metabolism , RNA Processing, Post-Transcriptional
19.
Proc Natl Acad Sci U S A ; 115(27): 7129-7134, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915051

ABSTRACT

Sleep and metabolism are physiologically and behaviorally intertwined; however, the molecular basis for their interaction remains poorly understood. Here, we identified a serine metabolic pathway as a key mediator for starvation-induced sleep suppression. Transcriptome analyses revealed that enzymes involved in serine biosynthesis were induced upon starvation in Drosophila melanogaster brains. Genetic mutants of astray (aay), a fly homolog of the rate-limiting phosphoserine phosphatase in serine biosynthesis, displayed reduced starvation-induced sleep suppression. In contrast, a hypomorphic mutation in a serine/threonine-metabolizing enzyme, serine/threonine dehydratase (stdh), exaggerated starvation-induced sleep suppression. Analyses of double mutants indicated that aay and stdh act on the same genetic pathway to titrate serine levels in the head as well as to adjust starvation-induced sleep behaviors. RNA interference-mediated depletion of aay expression in neurons, using cholinergic Gal4 drivers, phenocopied aay mutants, while a nicotinic acetylcholine receptor antagonist selectively rescued the exaggerated starvation-induced sleep suppression in stdh mutants. Taken together, these data demonstrate that neural serine metabolism controls sleep during starvation, possibly via cholinergic signaling. We propose that animals have evolved a sleep-regulatory mechanism that reprograms amino acid metabolism for adaptive sleep behaviors in response to metabolic needs.


Subject(s)
Brain/metabolism , Drosophila Proteins/metabolism , L-Serine Dehydratase/metabolism , Mutation , Serine/metabolism , Signal Transduction , Starvation/metabolism , Animals , Behavior, Animal , Drosophila Proteins/genetics , Drosophila melanogaster , L-Serine Dehydratase/genetics , Serine/genetics , Starvation/genetics
20.
Genetics ; 209(3): 815-828, 2018 07.
Article in English | MEDLINE | ID: mdl-29724861

ABSTRACT

Post-translational control is a crucial mechanism for circadian timekeeping. Evolutionarily conserved kinases and phosphatases have been implicated in circadian phosphorylation and the degradation of clock-relevant proteins, which sustain high-amplitude rhythms with 24-hr periodicity in animal behaviors and physiology. Here, we report a novel clock function of the heterodimeric Ca2+/calmodulin-dependent phosphatase calcineurin and its regulator sarah (sra) in Drosophila Genomic deletion of the sra locus dampened circadian locomotor activity rhythms in free-running constant dark after entrainment in light-dark cycles. Poor rhythms in sra mutant behaviors were accompanied by lower expression of two oscillating clock proteins, PERIOD (PER) and TIMELESS (TIM), at the post-transcriptional level. RNA interference-mediated sra depletion in circadian pacemaker neurons was sufficient to phenocopy loss-of-function mutation in sra On the other hand, a constitutively active form of the catalytic calcineurin subunit, Pp2B-14DACT, shortened circadian periodicity in locomotor behaviors and phase-advanced PER and TIM rhythms when overexpressed in clock neurons. Heterozygous sra deletion induced behavioral arrhythmicity in Pp2B-14DACT flies, whereas sra overexpression rescued short periods in these animals. Finally, pharmacological inhibition of calcineurin in either wild-type flies or clock-less S2 cells decreased the levels of PER and TIM, likely by facilitating their proteasomal degradation. Taken together, these data suggest that sra negatively regulates calcineurin by cell-autonomously titrating calcineurin-dependent stabilization of PER and TIM proteins, thereby sustaining high-amplitude behavioral rhythms in Drosophila.


Subject(s)
Calcineurin/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/physiology , Intracellular Signaling Peptides and Proteins/genetics , Period Circadian Proteins/metabolism , Animals , Calcium-Binding Proteins , Cell Line , Circadian Rhythm , Drosophila/genetics , Drosophila/metabolism , Gene Deletion , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/metabolism , Period Circadian Proteins/genetics , Protein Processing, Post-Translational , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...