Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 172: 103487, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285687

ABSTRACT

Using a monochromator in transmission electron microscopy, a low-energy-loss spectrum can provide inter- and intra-band transition information for nanoscale devices with high energy and spatial resolutions. However, some losses, such as Cherenkov radiation, phonon scattering, and surface plasmon resonance superimposed at zero-loss peak, make it asymmetric. These pose limitations to the direct interpretation of optical properties, such as complex dielectric function and bandgap onset in the raw electron energy-loss spectra. This study demonstrates measuring the dielectric function of germanium telluride using an off-axis electron energy-loss spectroscopy method. The interband transition from the measured complex dielectric function agrees with the calculated band structure of germanium telluride. In addition, we compare the zero-loss subtraction models and propose a reliable routine for bandgap measurement from raw valence electron energy-loss spectra. Using the proposed method, the direct bandgap of germanium telluride thin film was measured from the low-energy-loss spectrum in transmission electron microscopy. The result is in good agreement with the bandgap energy measured using an optical method.

2.
ACS Nano ; 16(12): 20758-20769, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36469438

ABSTRACT

Reversible conversion over multimillion times in bond types between metavalent and covalent bonds becomes one of the most promising bases for universal memory. As the conversions have been found in metastable states, an extended category of crystal structures from stable states via redistribution of vacancies, research on kinetic behavior of the vacancies is highly in demand. However, it remains lacking due to difficulties with experimental analysis. Herein, the direct observation of the evolution of chemical states of vacancies clarifies the behavior by combining analysis on charge density distribution, electrical conductivity, and crystal structures. Site-switching of vacancies of Sb2Te3 gradually occurs with diverged energy barriers owing to their own activation code: the accumulation of vacancies triggers spontaneous gliding along atomic planes to relieve electrostatic repulsion. Studies on the behavior can be further applied to multiphase superlattices composed of Sb2Te3 (2D) and GeTe (3D) sublayers, which represent superior memory performances, but their operating mechanisms were still under debate due to their complexity. The site-switching is favorable (suppressed) when Te-Te bonds are formed as physisorption (chemisorption) over the interface between Sb2Te3 (2D) and GeTe (3D) sublayers driven by configurational entropic gain (electrostatic enthalpic loss). Depending on the type of interfaces between sublayers, phases of the superlattices are classified into metastable and stable states, where the conversion could only be achieved in the metastable state. From this comprehensive understanding on the operating mechanism via kinetic behaviors of vacancies and the metastability, further studies toward vacancy engineering are expected in versatile materials.

3.
ACS Appl Mater Interfaces ; 12(33): 37285-37294, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32697074

ABSTRACT

Although Sb2Te3, as a candidate material for next-generation memory devices, has attractive properties such as higher operation speed and lower power consumption than Ge2Sb2Te5, its poor stability prevents its application to commercial memory devices. Transition metal dopants provide enhancements in its phase change characteristics, improving both thermal stability and operation energy. However, the enhancement mechanism remains to be sufficiently investigated, and standard properties need to be achieved. Herein, the phase change properties of Sb2Te3 are confirmed to be enhanced by the incorporation of a heavy transition metal element such as Ag. The crystallization temperature increases by nearly 40%, and the operation energy is reduced by approximately 60%. These enhancements are associated with the changes in the local Sb2Te3 structure caused by Ag incorporation. As the incorporated Ag atoms substitute Sb in the Sb-Te octahedron, this turns into a Ag-Te defective tetrahedron with a strong Ag-Te bond that induces distortion in the crystal lattice. The formation of this bond is attributed to the electron configuration of Ag and its fully filled d orbital. Thus, Ag-doped Sb2Te3 is a promising candidate for practical phase change memory devices with high stability and high operation speed.

SELECTION OF CITATIONS
SEARCH DETAIL
...