Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(31): 6535-6539, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39087787

ABSTRACT

Lappaconitine, a diterpene alkaloid isolated from Aconitum sinomontanum Nakai, exhibits a wide range of biological activities, making it a promising candidate for the development of novel derivatives with therapeutic potential. In our research, we executed a two-step transformation via oxidative cleavage of lappaconitine's vicinal diol using the hypervalent iodine reagent PhI(OAc)2, followed by strong alkaline hydrolysis. This approach yielded four new unanticipated compounds, whose structures were identified by spectroscopic methods and/or X-ray crystallography. Thus, we proposed plausible reaction mechanisms for their formations and particularly investigated the remarkable diastereoselectivity for the formation of single stereoisomer 8 observed during the alkaline hydrolysis step. Among them, compound 8 (code name: QG3030) demonstrated both enhanced osteogenic differentiation of human mesenchymal stem cells and significant osteogenic effect in an ovariectomized rat model with no acute oral toxicity.


Subject(s)
Aconitine , Iodine , Aconitine/analogs & derivatives , Aconitine/chemistry , Aconitine/pharmacology , Humans , Animals , Molecular Structure , Rats , Iodine/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Mesenchymal Stem Cells/drug effects , Aconitum/chemistry , Crystallography, X-Ray , Osteogenesis/drug effects , Stereoisomerism , Cell Differentiation/drug effects
2.
Nat Commun ; 15(1): 5564, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956119

ABSTRACT

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE). The FRASE database can be screened to identify structural environments similar to those in the target protein and seed the target structure with relevant ligand fragments. A neural network model is used to retain fragments with the highest likelihood of being native binders. The seeded fragments then inform ultra-large-scale virtual screening of commercially available compounds. We apply FRASE-bot to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising drug target implicated in triple negative breast cancer. FRASE-based virtual screening identifies a small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depletion-insensitive cells.


Subject(s)
Antineoplastic Agents , Calcium-Binding Proteins , Drug Discovery , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ligands , Drug Discovery/methods , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/chemistry , Cell Line, Tumor , Computer Simulation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Protein Binding , Neural Networks, Computer
3.
Res Sq ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645935

ABSTRACT

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify. Novel therapeutic targets are often hard-to-drug proteins, such as messengers or transcription factors. Computational strategies arise as a promising solution to expedite drug discovery for unconventional therapeutic targets. FRASE-bot exploits big data and machine learning (ML) to distill 3D information relevant to the target protein from thousands of protein-ligand complexes to seed it with ligand fragments. The seeded fragments can then inform either (i) de novo design of 3D ligand structures or (ii) ultra-large-scale virtual screening of commercially available compounds. Here, FRASE-bot was applied to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising but ligand-orphan drug target implicated in triple negative breast cancer. The signaling function of CIB1 relies on protein-protein interactions and its structure does not feature any natural ligand-binding pocket. FRASE-based virtual screening identified the first small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depleted cells.

4.
J Med Chem ; 65(10): 7231-7245, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35522528

ABSTRACT

MAGE proteins are cancer testis antigens (CTAs) that are characterized by highly conserved MAGE homology domains (MHDs) and are increasingly being found to play pivotal roles in promoting aggressive cancer types. MAGE-A4, in particular, increases DNA damage tolerance and chemoresistance in a variety of cancers by stabilizing the E3-ligase RAD18 and promoting trans-lesion synthesis (TLS). Inhibition of the MAGE-A4:RAD18 axis could sensitize cancer cells to chemotherapeutics like platinating agents. We use an mRNA display of thioether cyclized peptides to identify a series of potent and highly selective macrocyclic inhibitors of the MAGE-A4:RAD18 interaction. Co-crystal structure indicates that these inhibitors bind in a pocket that is conserved across MHDs but take advantage of A4-specific residues to achieve high isoform selectivity. Cumulatively, our data represent the first reported inhibitor of the MAGE-A4:RAD18 interaction and establish biochemical tools and structural insights for the future development of MAGE-A4-targeted cellular probes.


Subject(s)
Antigens, Neoplasm , Neoplasm Proteins , Neoplasms , Antigens, Neoplasm/chemistry , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Male , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Structure-Activity Relationship , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL