Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 56(Pt 4): 1131-1143, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555220

ABSTRACT

Laser melting, such as that encountered during additive manufacturing, produces extreme gradients of temperature in both space and time, which in turn influence microstructural development in the material. Qualification and model validation of the process itself and the resulting material necessitate the ability to characterize these temperature fields. However, well established means to directly probe the material temperature below the surface of an alloy while it is being processed are limited. To address this gap in characterization capabilities, a novel means is presented to extract subsurface temperature-distribution metrics, with uncertainty, from in situ synchrotron X-ray diffraction measurements to provide quantitative temperature evolution data during laser melting. Temperature-distribution metrics are determined using Gaussian process regression supervised machine-learning surrogate models trained with a combination of mechanistic modeling (heat transfer and fluid flow) and X-ray diffraction simulation. The trained surrogate model uncertainties are found to range from 5 to 15% depending on the metric and current temperature. The surrogate models are then applied to experimental data to extract temperature metrics from an Inconel 625 nickel superalloy wall specimen during laser melting. The maximum temperatures of the solid phase in the diffraction volume through melting and cooling are found to reach the solidus temperature as expected, with the mean and minimum temperatures found to be several hundred degrees less. The extracted temperature metrics near melting are determined to be more accurate because of the lower relative levels of mechanical elastic strains. However, uncertainties for temperature metrics during cooling are increased due to the effects of thermomechanical stress.

2.
Nat Commun ; 13(1): 5949, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36216805

ABSTRACT

Dwell fatigue, the reduction in fatigue life experienced by titanium alloys due to holds at stresses as low as 60% of yield, has been implicated in several uncontained jet engine failures. Dislocation slip has long been observed to be an intermittent, scale-bridging phenomenon, similar to that seen in earthquakes but at the nanoscale, leading to the speculation that large stress bursts might promote the initial opening of a crack. Here we observe such stress bursts at the scale of individual grains in situ, using high energy X-ray diffraction microscopy in Ti-7Al-O alloys. This shows that the detrimental effect of precipitation of ordered Ti3Al is to increase the magnitude of rare pri〈a〉 and bas〈a〉 slip bursts associated with slip localisation. By contrast, the addition of trace O interstitials is beneficial, reducing the magnitude of slip bursts and promoting a higher frequency of smaller events. This is further evidence that the formation of long paths for easy basal plane slip localisation should be avoided when engineering titanium alloys against dwell fatigue.

SELECTION OF CITATIONS
SEARCH DETAIL