Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38766144

ABSTRACT

Nucleoporins (nups) in the central channel of nuclear pore complexes (NPCs) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptors (NTRs) with bound cargos. The complex molecular interactions between nups and NTRs have been thought to underlie the gatekeeping function of the NPC. Recent studies have shown considerable variation in NPC diameter but how altering NPC diameter might impact the selective barrier properties remains unclear. Here, we build DNA nanopores with programmable diameters and nup arrangement to mimic NPCs of different diameters. We use hepatitis B virus (HBV) capsids as a model for large-size cargos. We find that Nup62 proteins form a dynamic cross-channel meshwork impermeable to HBV capsids when grafted on the interior of 60-nm wide nanopores but not in 79-nm pores, where Nup62 cluster locally. Furthermore, importing substantially changes the dynamics of Nup62 assemblies and facilitates the passage of HBV capsids through NPC mimics containing Nup62 and Nup153. Our study shows the transport channel width is critical to the permeability of nup barriers and underscores the role of NTRs in dynamically remodeling nup assemblies and mediating the nuclear entry of viruses.

2.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38241019

ABSTRACT

Exportin receptors are concentrated in the nucleus to transport essential cargoes out of it. A mislocalization of exportins to the cytoplasm is linked to disease. Hence, it is important to understand how their containment within the nucleus is regulated. Here, we have studied the nuclear efflux of exportin2 (cellular apoptosis susceptibility protein or CAS) that delivers karyopherinα (Kapα or importinα), the cargo adaptor for karyopherinß1 (Kapß1 or importinß1), to the cytoplasm in a Ran guanosine triphosphate (RanGTP)-mediated manner. We show that the N-terminus of CAS attenuates the interaction of RanGTPase activating protein 1 (RanGAP1) with RanGTP to slow GTP hydrolysis, which suppresses CAS nuclear exit at nuclear pore complexes (NPCs). Strikingly, a single phosphomimetic mutation (T18D) at the CAS N-terminus is sufficient to abolish its nuclear retention and coincides with metastatic cellular behavior. Furthermore, downregulating Kapß1 disrupts CAS nuclear retention, which highlights the balance between their respective functions that is essential for maintaining the Kapα transport cycle. Therefore, NPCs play a functional role in selectively partitioning exportins in the cell nucleus.


Subject(s)
Cell Nucleus , Cellular Apoptosis Susceptibility Protein , Karyopherins , ran GTP-Binding Protein , Active Transport, Cell Nucleus/physiology , Biological Transport , Cell Nucleus/metabolism , Cytoplasm/metabolism , Karyopherins/metabolism , Nuclear Pore/metabolism , ran GTP-Binding Protein/metabolism , Humans , Cellular Apoptosis Susceptibility Protein/genetics , Cellular Apoptosis Susceptibility Protein/metabolism
3.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260487

ABSTRACT

The Nuclear Pore Complex (NPC) facilitates rapid and selective nucleocytoplasmic transport of molecules as large as ribosomal subunits and viral capsids. It is not clear how key emergent properties of this transport arise from the system components and their interactions. To address this question, we constructed an integrative coarse-grained Brownian dynamics model of transport through a single NPC, followed by coupling it with a kinetic model of Ran-dependent transport in an entire cell. The microscopic model parameters were fitted to reflect experimental data and theoretical information regarding the transport, without making any assumptions about its emergent properties. The resulting reductionist model is validated by reproducing several features of transport not used for its construction, such as the morphology of the central transporter, rates of passive and facilitated diffusion as a function of size and valency, in situ radial distributions of pre-ribosomal subunits, and active transport rates for viral capsids. The model suggests that the NPC functions essentially as a virtual gate whose flexible phenylalanine-glycine (FG) repeat proteins raise an entropy barrier to diffusion through the pore. Importantly, this core functionality is greatly enhanced by several key design features, including 'fuzzy' and transient interactions, multivalency, redundancy in the copy number of FG nucleoporins, exponential coupling of transport kinetics and thermodynamics in accordance with the transition state theory, and coupling to the energy-reliant RanGTP concentration gradient. These design features result in the robust and resilient rate and selectivity of transport for a wide array of cargo ranging from a few kilodaltons to megadaltons in size. By dissecting these features, our model provides a quantitative starting point for rationally modulating the transport system and its artificial mimics.

4.
Nat Commun ; 14(1): 5131, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612271

ABSTRACT

The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.


Subject(s)
Nanopores , Polymers , Macromolecular Substances , CD40 Ligand , Solvents
5.
bioRxiv ; 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37066338

ABSTRACT

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.

6.
Methods Mol Biol ; 2551: 95-109, 2023.
Article in English | MEDLINE | ID: mdl-36310199

ABSTRACT

Tau, a soluble and predominantly neuronal protein, is best known for its microtubule (MT)-binding function in the cytosol, where it decisively contributes to stability as well as modulation of MT dynamics. In Alzheimer's disease and other tauopathies, Tau is altered into forming intracellular neurofibrillary tangles; additionally, also a mislocalization from the cytosol to the nucleus has been observed where interactions of Tau with the nucleus become possible. Using surface plasmon resonance (SPR), it was recently shown that Tau can directly interact with certain nucleoporins (e.g., Nup98), components of the nuclear pore complex (NPC). The NPC constitutes large regulated pores in the nuclear envelope that facilitate the bidirectional exchange of proteins, nucleic acids, and other biomolecules between the inner section of the nucleus and the cytosol, the nucleocytoplasmic transport. The mechanism of Tau/Nup interactions is as yet unknown, and a systematic interaction analysis of Tau with different Nups can be of high value to decipher the molecular binding mechanism of Tau to Nups. SPR is a useful tool to analyze binding affinities and kinetic parameters in a label-free environment. While one interaction partner is immobilized on a sensor chip, the second is supplied within a constant flow of buffer. Binding of mobile molecules to immobilized ones changes the refractive index of the medium close to the sensor surface with the signal being proportional to the bound mass. In this chapter, we describe the application of the SPR technique for the investigation of Tau binding to nucleoporins.


Subject(s)
Nuclear Pore Complex Proteins , Surface Plasmon Resonance , Active Transport, Cell Nucleus/physiology , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Proteins/chemistry , Spectrum Analysis , Surface Plasmon Resonance/methods , tau Proteins/metabolism
7.
Biomater Sci ; 10(15): 4309-4323, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35771211

ABSTRACT

The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the problems associated with cellular uptake and nuclear targeting, here we introduce a delivery platform based on the self-assembly of an amphiphilic peptide carrying an N-terminal KRKR sequence that functions as a nuclear localization signal (NLS). By means of a single-step self-assembly process, the amphiphilic peptides afford the generation of NLS-functionalized multicompartment micellar nanostructures that can embed various oligonucleotides between their individual compartments. Detailed physicochemical, cellular and ultrastructural analyses demonstrated that integrating an NLS in the hydrophilic domain of the peptide along with tuning its hydrophobic domain led to self-assembled DNA-loaded multicompartment micelles (MCMs) with enhanced cellular uptake and nuclear translocation. We showed that the nuclear targeting ensued via the NLS interaction with the nuclear transport receptors of the karyopherin family. Importantly, we observed that the treatment of MCF-7 cells with NLS-MCMs loaded with anti-BCL2 antisense oligonucleotides resulted in up to 86% knockdown of BCL2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. We envision that this platform can be used to efficiently entrap and deliver diverse genetic payloads to the nucleus and find applications in basic research and biomedicine.


Subject(s)
Nuclear Localization Signals , Oligonucleotides , Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , Humans , Micelles , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Oligonucleotides/metabolism , Peptides/chemistry
8.
Methods Mol Biol ; 2502: 311-328, 2022.
Article in English | MEDLINE | ID: mdl-35412248

ABSTRACT

Multivalent interactions underpin associations between intrinsically disordered proteins (IDPs) and their binding partners. This is a subject of considerable interest and governs how nuclear transport receptors (NTRs) orchestrate the nucleocytoplasmic transport (NCT) of signal-specific cargoes through nuclear pore complexes (NPCs) in eukaryotic cells. Specifically, IDPs termed phenylalanine-glycine nucleoporins (FG Nups) exert multivalent interactions with NTRs to facilitate their transport selectivity and speed through the NPC. Here, we document the use of surface plasmon resonance (SPR) to quantify the affinity and kinetics of NTR-FG Nup binding as a function of FG Nup surface density. Moreover, we describe an in situ method that measures conformational height changes that occur in a FG Nup layer following NTR-binding. Protocols by which the as-obtained SPR results are treated with respect to mass transport limitations are further described. Overall, the SPR methodology described here can be applied to studying multivalent interactions and the role of avidity in diverse biological and biointerfacial systems.


Subject(s)
Intrinsically Disordered Proteins , Active Transport, Cell Nucleus , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Protein Binding , Receptors, Cytoplasmic and Nuclear/metabolism , Surface Plasmon Resonance
9.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408855

ABSTRACT

Tau is a neuronal protein that stabilizes axonal microtubules (MTs) in the central nervous system. In Alzheimer's disease (AD) and other tauopathies, phosphorylated Tau accumulates in intracellular aggregates, a pathological hallmark of these diseases. However, the chronological order of pathological changes in Tau prior to its cytosolic aggregation remains unresolved. These include its phosphorylation and detachment from MTs, mislocalization into the somatodendritic compartment, and oligomerization in the cytosol. Recently, we showed that Tau can interact with phenylalanine-glycine (FG)-rich nucleoporins (Nups), including Nup98, that form a diffusion barrier inside nuclear pore complexes (NPCs), leading to defects in nucleocytoplasmic transport. Here, we used surface plasmon resonance (SPR) and bio-layer interferometry (BLI) to investigate the molecular details of Tau:Nup98 interactions and determined how Tau phosphorylation and oligomerization impact the interactions. Importantly, phosphorylation, but not acetylation, strongly facilitates the accumulation of Tau with Nup98. Oligomerization, however, seems to inhibit Tau:Nup98 interactions, suggesting that Tau-FG Nup interactions occur prior to oligomerization. Overall, these results provide fundamental insights into the molecular mechanisms of Tau-FG Nup interactions within NPCs, which might explain how stress-and disease-associated posttranslational modifications (PTMs) may lead to Tau-induced nucleocytoplasmic transport (NCT) failure. Intervention strategies that could rescue Tau-induced NCT failure in AD and tauopathies will be further discussed.


Subject(s)
Nuclear Pore Complex Proteins , Tauopathies , Active Transport, Cell Nucleus , Humans , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphorylation , Tauopathies/metabolism , tau Proteins/metabolism
10.
J Cell Biol ; 221(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35089308

ABSTRACT

Nuclear pore complexes (NPCs) discriminate nonspecific macromolecules from importin and exportin receptors, collectively termed "karyopherins" (Kaps), that mediate nucleocytoplasmic transport. This selective barrier function is attributed to the behavior of intrinsically disordered phenylalanine-glycine nucleoporins (FG Nups) that guard the NPC channel. However, NPCs in vivo are typically enriched with different Kaps, and how they impact the NPC barrier remains unknown. Here, we show that two major Kaps, importinß1/karyopherinß1 (Kapß1) and exportin 1/chromosomal maintenance 1 (CRM1), are required to fortify NPC barrier function in vivo. Their enrichment at the NPC is sustained by promiscuous binding interactions with the FG Nups, which enable CRM1 to compensate for the loss of Kapß1 as a means to maintain NPC barrier function. However, such a compensatory mechanism is constrained by the cellular abundances and different binding kinetics for each respective Kap, as evidenced for importin-5. Consequently, we find that NPC malfunction and nucleocytoplasmic leakage result from poor Kap enrichment.


Subject(s)
Karyopherins/metabolism , Nuclear Pore/metabolism , Animals , Binding, Competitive , Cell Membrane Permeability , Diffusion , Dogs , Fluorescence Recovery After Photobleaching , Gene Deletion , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Nuclear Pore/chemistry , Protein Binding , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL