Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 159(1): 169-182.e8, 2020 07.
Article in English | MEDLINE | ID: mdl-32169428

ABSTRACT

BACKGROUND & AIMS: Helicobacter pylori induces strong inflammatory responses that are directed at clearing the infection, but if not controlled, these responses can be harmful to the host. We investigated the immune-regulatory effects of the innate immune molecule, nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-containing 5 (NLRC5), in patients and mice with Helicobacter infection. METHODS: We obtained gastric biopsies from 30 patients in Australia. We performed studies with mice that lack NLRC5 in the myeloid linage (Nlrc5møKO) and mice without Nlrc5 gene disruption (controls). Some mice were gavaged with H pylori SS1 or Helicobacter felis; 3 months later, stomachs, spleens, and sera were collected, along with macrophages derived from bone marrow. Human and mouse gastric tissues and mouse macrophages were analyzed by histology, immunohistochemistry, immunoblots, and quantitative polymerase chain reaction. THP-1 cells (human macrophages, controls) and NLRC5-/- THP-1 cells (generated by CRISPR-Cas9 gene editing) were incubated with Helicobacter and gene expression and production of cytokines were analyzed. RESULTS: Levels of NLRC5 messenger RNA were significantly increased in gastric tissues from patients with H pylori infection, compared with patients without infection (P < .01), and correlated with gastritis severity (P < .05). H pylori bacteria induced significantly higher levels of chemokine and cytokine production by NLRC5-/- THP-1 macrophages than by control THP-1 cells (P < .05). After 3 months of infection with H felis, Nlrc5mø-KO mice developed gastric hyperplasia (P < .0001), splenomegaly (P < .0001), and increased serum antibody titers (P < .01), whereas control mice did not. Nlrc5mø-KO mice with chronic H felis infection had increased numbers of gastric B-cell follicles expressing CD19 (P < .0001); these follicles had features of mucosa-associated lymphoid tissue lymphoma. We identified B-cell-activating factor as a protein that promoted B-cell hyperproliferation in Nlrc5mø-KO mice. CONCLUSIONS: NLRC5 is a negative regulator of gastric inflammation and mucosal lymphoid formation in response to Helicobacter infection. Aberrant NLRC5 signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter infection.


Subject(s)
Helicobacter Infections/complications , Intracellular Signaling Peptides and Proteins/metabolism , Lymphoma, B-Cell, Marginal Zone/immunology , Stomach Neoplasms/immunology , Animals , B-Lymphocytes/immunology , Biopsy , Cell Proliferation , Disease Models, Animal , Female , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gene Expression Regulation, Neoplastic/immunology , Gene Knockout Techniques , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter felis/immunology , Helicobacter pylori/immunology , Humans , Hyperplasia/immunology , Hyperplasia/microbiology , Immunity, Innate , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Lymphoid Tissue/immunology , Lymphoid Tissue/microbiology , Lymphoid Tissue/pathology , Lymphoma, B-Cell, Marginal Zone/microbiology , Lymphoma, B-Cell, Marginal Zone/pathology , Male , Mice , Mice, Knockout , Signal Transduction/immunology , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , THP-1 Cells
2.
J Mol Biol ; 428(20): 3986-3998, 2016 10 09.
Article in English | MEDLINE | ID: mdl-27422009

ABSTRACT

The interaction between apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) plays a key role in the invasion of red blood cells by Plasmodium parasites. Disruption of this critical protein-protein interaction represents a promising avenue for antimalarial drug discovery. In this work, we exploited a 13-residue ß-hairpin based on the C-terminal loop of RON2 to probe a conserved binding site on Plasmodium falciparum AMA1. A series of mutations was synthetically engineered into ß-hairpin peptides to establish structure-activity relationships. The best mutations improved the binding affinity of the ß-hairpin peptide by ~7-fold for 3D7 AMA1 and ~14-fold for FVO AMA1. We determined the crystal structures of several ß-hairpin peptides in complex with AMA1 in order to define the structural features and specific interactions that contribute to improved binding affinity. The same mutations in the longer RON2sp2 peptide (residues 2027-2055 of RON2) increased the binding affinity by >30-fold for 3D7 and FVO AMA1, producing KD values of 2.1nM and 0.4nM, respectively. To our knowledge, this is the most potent strain-transcending peptide reported to date and represents a valuable tool to characterize the AMA1-RON2 interaction.


Subject(s)
Antigens, Protozoan/metabolism , Antimalarials/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Crystallography, X-Ray , Membrane Proteins/genetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Peptides/chemistry , Protein Binding/drug effects , Protein Conformation , Protozoan Proteins/genetics , Structure-Activity Relationship
3.
J Mol Recognit ; 29(6): 281-91, 2016 06.
Article in English | MEDLINE | ID: mdl-26804042

ABSTRACT

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) plays an important role in the invasion by merozoites of human red blood cells during a malaria infection. A key region of PfAMA1 is a conserved hydrophobic cleft formed by 12 hydrophobic residues. As anti-apical membrane antigen 1 antibodies and other inhibitory molecules that target this hydrophobic cleft are able to block the invasion process, PfAMA1 is an attractive target for the development of strain-transcending antimalarial agents. As solution nuclear magnetic resonance spectroscopy is a valuable technique for the rapid characterization of protein-ligand interactions, we have determined the sequence-specific backbone assignments for PfAMA1 from two P. falciparum strains, FVO and 3D7. Both selective labelling and unlabelling strategies were used to complement triple-resonance experiments in order to facilitate the assignment process. We have then used these assignments for mapping the binding sites for small molecules, including benzimidazoles, pyrazoles and 2-aminothiazoles, which were selected on the basis of their affinities measured from surface plasmon resonance binding experiments. Among the compounds tested, benzimidazoles showed binding to a similar region on both FVO and 3D7 PfAMA1, suggesting that these compounds are promising scaffolds for the development of novel PfAMA1 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Antimalarials/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Small Molecule Libraries/metabolism , Amino Acid Sequence , Antimalarials/chemistry , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Binding Sites , Drug Design , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Pyrazoles/chemistry , Pyrazoles/metabolism , Small Molecule Libraries/chemistry , Thiazoles/chemistry , Thiazoles/metabolism
4.
J Med Chem ; 58(3): 1205-14, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25559643

ABSTRACT

We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries.


Subject(s)
Thiazoles/chemistry , Drug Discovery , High-Throughput Screening Assays , Magnetic Resonance Spectroscopy , Molecular Structure , Surface Plasmon Resonance
5.
Biochemistry ; 53(46): 7310-20, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25360546

ABSTRACT

Apical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to vaccine-induced antibodies and peptide inhibitors exerting strain-transcending inhibitory effects. Here we present the X-ray crystal structure of AMA1 domains I and II from Plasmodium falciparum strain FVO. We compare our new structure to those of AMA1 from P. falciparum 3D7 and Plasmodium vivax. A combination of normalized B factor analysis and computational methods has been used to investigate the flexibility of the domain I loops and how this correlates with their roles in determining the strain specificity of human antibody responses and inhibitory peptides. We also investigated the domain II loop, a key region involved in inhibitor binding, by comparison of multiple AMA1 crystal structures. Collectively, these results provide valuable insights that should contribute to the design of strain-transcending agents targeting P. falciparum AMA1.


Subject(s)
Antigens, Protozoan/chemistry , Malaria, Falciparum/parasitology , Membrane Proteins/chemistry , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Plasmodium vivax/chemistry , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...